On a new combination of orthogonal polynomials sequences

Автор: Ali Khelil Karima, Belkebir A., Bouras Mohamed Cherif

Журнал: Владикавказский математический журнал @vmj-ru

Статья в выпуске: 3 т.24, 2022 года.

Бесплатный доступ

In this paper, we are interested in the following inverse problem. We assume that {Pn}n≥0 is a monic orthogonal polynomials sequence with respect to a quasi-definite linear functional u and we analyze the existence of a sequence of orthogonal polynomials {Qn}n≥0 such that we have a following decomposition Qn(x)+rnQn-1(x)=Pn(x)+snPn-1(x)+tnPn-2(x)+vnPn-3(x), n≥0, when vnrn≠0, for every n≥4. Moreover, we show that the orthogonality of the sequence {Qn}n≥0 can be also characterized by the existence of sequences depending on the parameters rn, sn, tn, vn and the recurrence coefficients which remain constants. Furthermore, we show that the relation between the corresponding linear functionals is k(x-c)u=(x3+ax2+bx+d)v, where c,a,b,d∈C and k∈C∖{0}. We also study some subcases in which the parameters rn, sn, tn and vn can be computed more easily. We end by giving an illustration for a special example of the above type relation.

Еще

Orthogonal polynomials, linear functionals, inverse problem, chebyshev polynomials

Короткий адрес: https://sciup.org/143179155

IDR: 143179155   |   DOI: 10.46698/a8091-7203-8279-c

Список литературы On a new combination of orthogonal polynomials sequences

  • Chihara, T. S. An Introduction to Orthogonal Polynomials, New York, Gordon and Breach, 1978.
  • Maroni, P. Une Theorie Algebrique des Polynomes Orthogonaux. Application aux Polynomes Orthogonaux Semi-Classiques, Orthogonal Polynomials and their Applications, IMACS Annals on Computing and Applied Mathematics, eds. C. Brezinski et al., vol. 9, Basel, Baltzer, 1991, pp. 95-130.
  • Petronilho, J. On the Linear Functionals Associated to Linearly Related Sequences of Orthogonal Polynomials, Journal of Mathematical Analysis and Applications, 2006, vol. 315, no. 2, pp. 379-393.
  • Alfaro, M., Marcellan, F., Pena, A. and Rezola, M. L. On Linearly Related Orthogonal Polynomials and their Functionals, Journal of Mathematical Analysis and Applications, 2003, vol. 287, no. 1, pp. 307-319.
  • Alfaro, M., Marcell'an, F., Pe˜na, A. and Rezola, M. L. On Rational Transformations of Linear Functionals: Direct Problem, Journal of Mathematical Analysis and Applications, 2004, vol. 298, no. 1, pp. 171-183.
  • Alfaro, M., Marcellan, F., Pena, A. and Rezola, M. L. When Do Linear Combinations of Orthogonal Polynomials Yield New Sequences of Orthogonal Polynomials, Journal of Computational and Applied Mathematics, 2010, vol. 233, no. 6, pp. 1446-1452.
  • Alfaro, M., Pena, A., Rezola, M. L. and Marcellan, F. Orthogonal Polynomials Associated with an Inverse Quadratic Spectral Transform, Computers and Mathematics with Application, 2011, vol. 61, no. 4, pp. 888-900.
  • Alfaro, M., Pena, A., Petronilho, J. and Rezola, M. L. Orthogonal Polynomials Generated by a Linear Structure Relation: Inverse Problem, Journal of Mathematical Analysis and Applications, 2013, vol. 401, no. 1, pp. 182-197.
  • Kwon, K. H., Lee, D. W., Marcellan, F. and Park, S. B. On Kernel Polynomials and Self-Perturbation of Orthogonal Polynomials, Annali di Matematica Pura ed Applicata, 2001, vol. 180, no. 2, pp. 127-146.
  • Ronveaux, A. and Van Assche, W. Upward Extension of the Jacobi Matrix for Orthogonal Polynomials, Journal of Approximation Theory, 1996, vol. 86, no. 3, pp. 335-357.
Еще
Статья научная