On extreme extension of positive operators

Автор: Kusraev Anatoly G.

Журнал: Владикавказский математический журнал @vmj-ru

Статья в выпуске: 2 т.26, 2024 года.

Бесплатный доступ

Given vector lattices E, F and a positive operator S from a majorzing subspace D of E to F, denote by E(S) the collection of all positive extensions of S to all of E. This note aims to describe the collection of extreme points of the convex set E(T∘S). It is proved, in particular, that E(T∘S) and T∘E(S) coincide and every extreme point of E(T∘S) is an extreme point of T∘E(S), whenever T:F→G is a Maharam operator between Dedekind complete vector lattices. The proofs of the main results are based on the three ingredients: a characterization of extreme points of subdifferentials, abstract disintegration in Kantorovich spaces, and an intrinsic characterization of subdifferentials.

Еще

Vector lattice, positive operator, extreme extension, subdifferential, maharam operator

Короткий адрес: https://sciup.org/143182545

IDR: 143182545   |   DOI: 10.46698/s3201-6067-0570-n

Список литературы On extreme extension of positive operators

  • Aliprantis, C. D. and Burkinshaw, O. Positive Operators, Dordrecht, Springer, 2006.
  • Lipecki, Z., Plachky, D. and Thomsen, W. Extension of Positive Operators and Extreme Points. I, Colloquium Mathematicum, 1979, vol. 42, pp. 279-284. DOI: 10.4064/cm-42-1-279-284
  • Kutateladze, S. S. Extreme Points of Subdifferentials, Doklady Akademii Nauk SSSR, 1978, vol. 242, no. 5, pp. 1001-1003 (in Russian).
  • Kutateladze, S. S. The Krein-Mil'man Theorem and its Inverse, Siberian Mathematical Journal, 1980, vol. 21, no. 1, pp. 97-103. DOI: 10.1007/BF00970127
  • Kusraev, A. G. and Kutateladze, S. S. Analysis of Subdifferentials via Boolean-Valued Models, Doklady Akademii Nauk SSSR, 1982, vol. 265, no. 5, pp. 1061-1064 (in Russian).
  • Kusraev, A. G. General Desintegration Formulas, Doklady Akademii Nauk SSSR, 1982, vol. 265, no. 6, pp. 1312-1316.
  • Lipecki, Z. Compactness and Extreme Points of the Set of Quasi-Measure Extensions of a Quasi-Measure, Dissertationes Mathematicae, 2013, vol. 493, pp. 1-59. DOI: 10.4064/dm493-0-1
  • Holmes, R. B. Geometric Functional Analysis and Its Applications, Springer-Verlag, Berlin etc., 1975.
  • Kusraev, A. G. and Kutateladze, S. S. Subdifferentials: Theory and Applications, Dordrecht, Kluwer Academic Publishers, 1995.
  • Lipecki, Z. Extensions of Positive Operators and Extreme Points. III, Colloquium Mathematicum, 1982, vol. 46, pp. 263-268. DOI: 10.4064/cm-46-2-263-268
Еще
Статья научная