On generalization of Fourier and Hartley transforms for some quotient class of sequences

Автор: Al-Omari Shrideh Khalaf

Журнал: Владикавказский математический журнал @vmj-ru

Статья в выпуске: 4 т.18, 2016 года.

Бесплатный доступ

In this paper we consider a class of distributions and generate two spaces of Boehmians for certain class of integral operators. We derive a convolution theorem and generate two spaces of Boehmians. The integral operator under concern is well-defined, linear and one-to-one in the class of Boehmians. An inverse problem is also discussed in some details.

$h_{\alpha, \beta }^{\rho, \eta }$ transform trаnsfоrm, hartley transform, fourier transform, quotient space

Короткий адрес: https://sciup.org/14318552

IDR: 14318552

Список литературы On generalization of Fourier and Hartley transforms for some quotient class of sequences

  • Al-Omari S. K. Q., Loonker D., Banerji P. K., Kalla S. L. Fourier sine (cosine) transform for ultradistributions and their extensions to tempered and ultra Boehmian spaces, Integr. Transf. Spec. Funct. 2008, vol. 19, no. 6, pp. 453-462.
  • Al-Omari S. K. Q., Kilicman A. On diffraction Fresnel transforms for Boehmians, Abstr. Appl. Anal., 2011, vol. 2011, 11 p. (Article ID 712746).
  • Al-Omari S. K. Q. Hartley transforms on certain space of generalized functions, Georgian Math. J., 2013, vol. 20, no. 3, pp. 415-426.
  • Al-Omari S. K. Q., Kilicman A. Note on Boehmians for class of optical Fresnel wavelet transforms, J. Funct. Space Appl., 2012, vol. 2012, pp. 1-13. (Article ID 405368; ) DOI: 10.1155/2012/405368
  • Al-Omari S. K. Q., Kilicman A. On generalized Hartley-Hilbert and Fourier-Hilbert transforms, Adv. Diff. Equ., 2012, vol. 2012, no. 232, pp. 1-12. () DOI: 10.1186/1687-1847-2012-232
  • Al-Omari S. K. Q. On a generalized Meijer-Laplace transforms of Fox function type kernels and their extension to a class of Boehmians, Georgian Math. J., 2015. (In Press).
  • Al-Omari S. K. Q. Some characteristics of S transforms in a class of rapidly decreasing Boehmians, J. Pseudo-Differ. Oper. Appl., 2014, vol. 5, issu 4, pp. 527-537. () DOI: 10.1007/s11868-014-0102-8
  • Boehme T. K. The support of Mikusinski operators, Tran. Amer. Math. Soc., 1973, vol. 176, pp. 319-334.
Еще
Статья научная