On Poletsky-type modulus inequalities for some classes of mappings
Автор: Vodopyanov Sergey K.
Журнал: Владикавказский математический журнал @vmj-ru
Статья в выпуске: 4 т.24, 2022 года.
Бесплатный доступ
It is well-known that the theory of mappings with bounded distortion was laid by Yu. G. Reshetnyak in 60-th of the last century [1]. In papers [2, 3], there was introduced the two-index scale of mappings with weighted bounded (q,p)-distortion. This scale of mappings includes, in particular, mappings with bounded distortion mentioned above (under q=p=n and the trivial weight function). In paper [4], for the two-index scale of mappings with weighted bounded (q,p)-distortion, the Poletsky-type modulus inequality was proved under minimal regularity; many examples of mappings were given to which the results of [4] can be applied. In this paper we show how to apply results of [4] to one such class. Another goal of this paper is to exhibit a new class of mappings in which Poletsky-type modulus inequalities is valid. To this end, for n=2, we extend the validity of the assertions in [4] to the limiting exponents of summability: 1
Quasiconformal analysis, sobolev space, modulus of a family of curves, modulus estimate
Короткий адрес: https://sciup.org/143179311
IDR: 143179311 | DOI: 10.46698/w5793-5981-8894-o
Список литературы On Poletsky-type modulus inequalities for some classes of mappings
- Reshetnyak Yu. G. Space Mappings with Bounded Distortion, Providence, Amer. Math. Soc., 1989.
- Vodopyanov, S. K. Basics of the Quasiconformal Analysis of a Two-Index Scale of Space Mappings, Siberian Mathematical Journal, 2018, vol. 59, no. 5, pp. 805–834. DOI: 10.1134/S0037446618050075.
- Vodopyanov, S. K. Differentiability of Mappings of the Sobolev Space W1 n−1 with Conditions on the Distortion Function, Siberian Mathematical Journal, 2018, vol. 59, no. 6, pp. 983–1005. DOI: 10.1134/S0037446618060034.
- Vodopyanov, S. K. Moduli Inequalities for W1 n−1,loc-Mappings with Weighted Bounded (q, p)-Distortion, Complex Variables and Elliptic Equations, 2021, vol. 66, no. 6–7, pp. 1037–1072. DOI: 10.1080/17476933.2020.1825396.
- V¨ais¨al¨a J. Lectures on n-Dimensional Quasiconformal Mappings, Lecture Notes in Mathematics, vol. 229, Berlin-Heidelberg-New York, Springer, 1971.
- Fuglede, B. Extremal Length and Functional Completion, Acta Mathematica, 1957, vol. 98, pp. 171–219. DOI: 10.1007/BF02404474.
- Vodopyanov, S. K. The Regularity of Inverses to Sobolev Mappings and the Theory of Qq,p-Homeomorphisms, Siberian Mathematical Journal, 2020, vol. 61, no. 6, pp. 1002–1038. DOI: 10.1134/S0037446620060051.
- Vodopyanov, S. K. and Tomilov, A. O. Functional and Analytic Properties of a Class of Mappings in Quasi-Conformal Analysis, Izvestiya: Mathematics, 2021, vol. 85, no. 5, pp. 883–931. DOI: 10.1070/IM9082.
- Vodopyanov, S. K. Regularity of Mappings Inverse to Sobolev Mappings, Sbornik: Mathematics, 2012, vol. 203, no. 10, pp. 1383–1410. DOI: 10.1070/SM2012v203n10ABEH004269.
- Hencl, S. and Koskela, P. Regularity of the Inverse of a Planar Sobolev Homeomorphism, Archive for Rational Mechanics and Analysis, 2006, vol. 180, pp. 75–95. DOI: 10.1007/s00205-005-0394-1.
- Rickman S. Quasiregular mappings, Berlin, Springer-Verlag, 1993, 213 p.
- Poletsky, E. A. The Modulus Method for Nonhomeomorphic Quasiconformal Mappings, Mathematics of the USSR-Sbornik, 1970, vol. 12, no. 2, pp. 260–270. DOI: 10.1070/SM1970v012n02ABEH000921.
- Salimov, R. R., Sevost’yanov, E. A. and Targonskii, V. A. On Modulus Inequality of the Order p for the Inner Dilatation. arXiv - MATH - Complex Variables. 2022. DOI:arxiv-2204.07870.