On stability of retro Banach frame with respect to b-linear functional in n-Banach space
Автор: Ghosh Prasenjit, Samanta Tapas Kumar
Журнал: Владикавказский математический журнал @vmj-ru
Статья в выпуске: 1 т.25, 2023 года.
Бесплатный доступ
We introduce the notion of a retro Banach frame relative to a bounded b-linear functional in n-Banach space and see that the sum of two retro Banach frames in n-Banach space with different reconstructions operators is also a retro Banach frame in n-Banach space. Also, we define retro Banach Bessel sequence with respect to a bounded b-linear functional in n-Banach space. A necessary and sufficient condition for the stability of retro Banach frame with respect to bounded b-linear functional in n-Banach space is being obtained. Further, we prove that retro Banach frame with respect to bounded b-linear functional in n-Banach space is stable under perturbation of frame elements by positively confined sequence of scalars. In n-Banach space, some perturbation results of retro Banach frame with the help of bounded b-linear functional in n-Banach space have been studied. Finally, we give a sufficient condition for finite sum of retro Banach frames to be a retro Banach frame in n-Banach space. At the end, we discuss retro Banach frame with respect to a bounded b-linear functional in Cartesian product of two n-Banach spaces.
Frame, banach frame, retro banach frame, stability, n-banach space, b-linear functional
Короткий адрес: https://sciup.org/143179838
IDR: 143179838 | DOI: 10.46698/o3961-3328-9819-i
Список литературы On stability of retro Banach frame with respect to b-linear functional in n-Banach space
- Gabor, D. Theory of Communications, Journal of Institution of Electrical Engineers, 1946, vol. 93, pp. 429-457.
- Duffin, R. J. and Schaeffer, A. C. A Class of Nonharmonic Fourier Series, Transactions of the American Mathematical Society, 1952, vol. 72, no. 2, pp. 341-366. DOI: 10.1090/s0002-9947-1952-0047179-6.
- Daubechies, I., Grossmann, A. and Mayer, Y. Painless Nonorthogonal Expansions, Journal of Mathematical Physics, 1986, vol. 27, no. 5, pp. 1271-1283. DOI: 10.1063/1.527388.
- Feichtinger, H. G. and Grochenig, K. Banach Spaces Related to Integrable Group Representation and their Atomic Decompositions, I, Journal of Functional Analysis, 1989, vol. 86, no. 2, pp. 307-340. DOI: 10.1016/0022-1236(89)90055-4.
- Feichtinger, H. G. and Grochenig, K. Banach Spaces Related to Integrable Group Representation and their Atomic Decompositions, II, Monatshefte fur Mathematik, 1989, vol. 108, pp. 129-148. DOI: 10.1007/BF01308667.
- Grochenig, K. Describing Functions: Atomic Decomposition Versus Frames, Monatshefte fur Mathematik, 1991, vol. 112, no. 1, pp. 1-42. DOI: 10.1007/BF01321715.
- Cazassa, P. G., Han, D. and Larson, D. R. Frames for Banach Spaces, The Functional and Harmonic Analysis of Wavelets and Frames, Contemporary Mathematics, vol. 247, American Mathematical Society, Providence, R.I., 1999, pp. 149-182. DOI: 10.1090/conm/247/03801
- Jain, P. K., Kaushik, S. K. and Vashisht, L. K. Banach Frames for Conjugate Banach Spaces, Journal for Analysis and its Applications, 2004, vol. 23, no. 4, pp. 713-720.DOI: 10.4171/ZAA/1217.
- Vashisht, L. K. On Retro Banach Frames of Type P, Azerbaijan Journal of Mathematics, 2012, vol. 2, pp. 82-89.
- Christensen, O. and Heil, C. Perturbation of Banach Frames and Atomic Decompositions, Mathematische Nachrichten, 1997, vol. 185, no. 1, pp. 33-47. DOI: 10.1002/mana.3211850104.
- Jain, P. K., Kaushik, S. K. and Vashisht, L. K. On Stability of Banach Frames, Bulletin of the Korean Mathematical Society, 2007, vol. 44, no. 1, pp. 73-81. DOI: 10.4134/bkms.2007.44.1.073.
- Gahler, S. Lineare 2-Normierte Raume, Mathematische Nachrichten, 1964, vol. 28, no. 1-2, pp. 1-43. DOI: 10.1002/mana.19640280102.
- Gunawan, H. and Mashadi, M. On n-Normed Spaces, International Journal of Mathematics and Mathematical Sciences, 2001, vol. 27, no. 10, pp. 631-639. DOI: 10.1155/s0161171201010675.
- Ghosh, P. and Samanta, T. K. Construction of Frame Relative to n-Hilbert Space, Journal of Linear and Topological Algebra, 2021, vol. 10, no. 02, pp. 117-130.
- Ghosh, P. and Samanta, T. K. Introduction of Frame in Tensor Product of n-Hilbert Spaces, Sahand Communication in Mathematical Analysis, 2021, vol. 18, no. 4, pp. 1-18. DOI: 10.22130/scma.2021.524252.909.
- Ghosh, P. and Samanta, T. K. Atomic Systems in n-Hilbert Spaces and their Tensor Products, Journal Linear Topological Algebra, 2021, vol. 10, no. 04, pp. 241-256.
- Ghosh, P. and Samanta, T. K. Representation of Uniform Boundedness Principle and Hahn-Banach Theorem in Linear n-Normed Space, The Journal of Analysis, 2022, vol. 30, no. 2, pp. 597-619. DOI: 10.1007/s41478-021-00358-x.
- Singer, I. Bases in Banach Spaces. II, New York-Heidelberg, Springer-Verlag, 1981.