On the mean-value property for polyharmonic functions

Бесплатный доступ

The mean-value property for normal derivatives of polyharmonic function on the unit sphere is obtained. The value of integral over the unit sphere of normal derivative of mth order of polyharmonic function is expressed through the values of the Laplacian's powers of this function at the origin. In particular, it is established that the integral over the unit sphere of normal derivative of degree not less then 2k-1 of k-harmonic function is equal to zero. The values of polyharmonic function and its Laplacian's powers at the center of the unit ball are found. These values are expressed through the integral over the unit sphere of a linear combination of the normal derivatives up to k-1 degree for the k-harmonic function. Some illustrative examples are given.

Еще

Polyharmonic functions, mean-value property, normal derivatives on a sphere

Короткий адрес: https://sciup.org/147159226

IDR: 147159226

Текст научной статьи On the mean-value property for polyharmonic functions

In investigation of mathematical models described by the polyharmonic equation properties of polyharmonic functions are very useful to know. Let u ( x ) be a harmonic function in the domain Q C R n and B r ( x ) = {y E R n : |y — x| < r} . It is well known (see [1]) the Gauss mean-value property for harmonic functions: if x E Q and B r ( x ) C Q , then for all functions harmonic in Q

u ( x ) = i^B 1 ( x ) T дв г, ( . ) u ( y 1

This mean-value property has been extended by Pizzetti (see [2]) for k-harmonic functions in Q to the form r 2 гд iu ( x 0)

4 i i !Г( i + n/ 2) ,

1      /                           X 1

dB(x)l двг,(.)u(y 1 dsy = r(n/2) X- where Г(a) is the Euler’s gamma function. This property can be easily written for a k-harmonic function u E CX1(Si') in the unit ball S C Rn in the form

1                   X- 1

;Ju ( x )=g

Д i u (0) (2 , 2) г ( n, 2) г ,

where шп is the surface area of the unit sphere dS, and (a, b)x = a(a + b) • • • (a + b(k — 1)) is the generalized Pochhammer symbol with (a,b)o = 1. For example, (2, 2)г = (2i)!!. The similar formula was proved in [3, Theorem 7] for calculating the integral of homogeneous polynomial Qm (x) on the unit sphere j^ I   Qm (x) dsx

0 ,

*     Дm/2 Qm ( x )    ш m!! n ••• (n + m — 2) n m E 2N — 1

m E 2N

Consider the operator Л defined by the equality

n

Л = X Xi Ь i =1

This operator plays an important role in our investigation because in the paper [4] it was proved that the following equality is fulfilled on ∂S

k u ∂ν k

= Л [ k 1 u,

where v is the outer normal to dS , and t [ k 1 = t ( t — 1) ... ( t — k + 1) is a factorial power of t . Besides, it is known (see, for example, [5]) that if u is a harmonic function, then function P (Л) u is also a harmonic one, where P ( A ) is a polynomial.

1.    The mean-value property for normal derivatives

We are going to extend formula (2) to the normal derivatives of the function u ( x ) . Let us denote N q = N U { 0 } .

Theorem 1. For all m G N q and for any polyharmonic function in the unit ball u G C m ( S ) the following equality holds

- [ "m^ds- = X , (2k)[mV A‘u(0), Шп-JdS dvm x k= (2,2)k(n, 2)k' '’

where ν is the unit outer normal to ∂S.

Proof. In [6, Theorem 4] it is proved that for any polyharmonic in S function u ( x ) the following Almansi representation takes place

^ 1 Ixl2 k Г1 (1 — a) k-1.

u(X)= vq(X) + 52 4k~kP j   (k - 1), an/ 1 Vk(ax) da,(6)

where harmonic in S functions v q( x ) ,..., V k ( x ) ,... are given by the formula

/ \ а к ( \    V'' (—1)s Ix|2s Z1 (1 — a)s 1 as 1 n/2—i л k+s /

V k ( x ) = A k u ( x ) + X^^SS T J --- ( s - 1), ---a / 1 A k + u ( ax ) da. (7)

The upper limit of sum above is equal to infinity but since the function u ( x ) is a polyharmonic in S then summation is finite and exists k q such that V k ( x ) = 0 for all k > k q . It is not hard to see that

Л( |x|2 k u) = |x|2 k (2 k + Л) u and therefore

Л[2] (|x|2ku) = (Л — 1)(|x|2k(2k + Л)u) = |x|2k(2k — 1 + Л)(2k + Л)u, whence

Л[m 1 (|x|2ku) = |x|2k(2k — m + 1 + Л)... (2k — 1 + Л)(2k + Л)u = (2k)[m 1 u + Qm(Л)u, where Qm(A) is a certain polynomial such that Qm(0) = 0. Therefore in S we have

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ

Л [ m 1 u ( x ) = Л [ m^ v o ( x ) + X X 2k 4 m ! x 2 k [1 (1 . - - 11 k 1 a n 2 - 1 V k ( ax ) da + k =1              -                (         )•

X IxT Г 1 (1 - a)k- 1    / 2 - 1

+ / v 4 k k ! y0    ( k - 1)! a     Q m (Л) v k ( )

Using the mean-value property for harmonic functions and harmonicity of Л V k we can obtain the equality J^ Q m (Л) V k ( ax ) ds x = 0 . Therefore using (7) we have

Л [ m u ( x ) dsx = X            A1 - a ) k

1 a n/ 2 1 dav k (0) =

“1-           x  k — 4 kк !( к - 1)! V J

_ X (2 к ) m v k (0) _ X (2 к ) m A ku (0) = b(2 , 2) k ( n, 2) k =      (2 , 2) k ( n, 2) k .

k =1                  k =o

= X (2 к ) [ m ] V k (0) Г( к )Г( n/ 2) k —1 4 kк !( к — 1)! Г( к + n/ 2)

Hence, by virtue of (4), we obtain the theorem’s statement for m >  0 . If m = 0 , then by equality (2) the formula (5) is true in this case also.

Example 1. Let function u ( x ) be a harmonic in S and u E C ^ ( S ) , then from Theorem 1 follows that

m u

У , s dv m ds x = 0 - m - 1

For a biharmonic in S function u E C^ (S) from Theorem 1 follows that г d mu          2[m]

JdS dV m ds x = ^ n I n A u (0) = 0 ’ m 3

since 2 [ m 1 = 0 at m — 3 (see example 3). In general case, if the function u ( x ) is a k -harmonic in S and u E C ^ ( S ) , them from Theorem 1 it follows that

Г d mu ,         k- 1 (2 i ) 1 m ] A i u (0)

JS dV m ds x = n g (2 - 2) , ( n- 2) , - m — 2 k - 1

because of equality (2 k — 2) [ m 1 = 0 provided that m — 2 k — 1 .

2.    The value of polyharmonic function at the unit ball center

The following statement is true.

Theorem 2. For any polyharmonic in the unit ball S C R n function u E C k- 1 ( S ) the equality

1 Г Л0 L1 du         k^_ 1 d k 1 u\

u(0) = “nL hhku + hk dv +'" + hk dV—1)dsx holds, where hsk are found from the equality

,     ( - 1) k- 1 / 1 , _    \< k- 11

h k    s !( k - 1)! g(Xt ))„ =1 -

satisfy to the recurrence relation

h k +1 _ ( 1

-

S is 1 s - 1 2 k )h k + 2 k h k -

and are coefficients of the polynomial

( - 1) k 1

H k- 1 ( A ) = , w( A 2) ••• ( X - 2 к + 2)                        (11)

(2 к 2)..

expanded in the terms of factorial powers X 1 s ]

H k- 1 ( X ) = h kk- 1 X 1 k- 1 + h k k - 2 X 1 k- 2 + • • • + h k X [1] + h k .                   (12)

The original proof of this Theorem is omitted because it requires some additional investigations and moreover this Theorem is a special case of more general Theorem 4.

It is necessary to note that recurrence relation similar to (10) a k +1 = ( к — 2 s + 1) a k + 2 a k- 1 was used in [7], where special polynomials were constructed. Regularization of integral equations was considered in [8, 9]. Recurrence relation of the form (10) determines some arithmetical triangle similar to Pascal, Euler and Stirling triangles, but its elements are rational fractions. Calculating h s k by the formula (10) the triangle H can be written in the form

H =

11   3

16 16

93   29

48

128 128    192 384

••• h k +1 = (1 — s/ (2 к )) h k 1 / (2 к ) h k- 1 •••

Remark 1. Formula (8) according to (12) and (4) can be represented in the form u (0) =

ω n ∂S

H k- 1 (Л) u ( x ) ds x .

Example 2. For a 4-harmonic function u E C 3 ( S ) , according to 4th row of the triangle H from (13), the following equality holds

3 d 2 u   1 d 3 u

16 dv 2    48 dv 3

u (0) =

M u—— 11 du +

Ш п dss     16 dv

Consider polynomial

H m ) ( X ) = X ( X - 2) • • • ( X - 2 m + 2)( X - 2 m - 2) • • • ( X - 2 к + 2) .           (14)

It is obvious, that H k- 1 ( X ) = H k-^ X ) /H k- 1(0) and H k ( m_ ) (2 m ) = 0 .

Lemma 1. Let u (x) = u 0 (x) + • • • + |x|2 k-2 uk-1( x)

be the Almansi representation of a к-harmonic in S function u(x) and such that u E Ck- 1(S), then for m E No and m < к the equality um(0) =

Ш n H km i (2 m )

/

∂S

H km 1 (Л) u ( x ) ds x

holds true.

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ

Proof. Let A E R , i E N g , i < k and v ( x ) be a harmonic in S function. It is not hard to see that in S the equality

— A ) ( | x | 2 i v ( x ) ) = |x| 2 ' ( (2 i — A ) v ( x ) + Л v ( x ) )

holds true and therefore

H-m1 (Л) (|x|2iv(x)) = |x|2' H-m1 (2i)v(x) + Qk- 1(Л)v(x)), where Q--1(A) is a certain polynomial of degree (k — 1) depending on H-m) and such that Q--1(0) = 0. Function Q-- 1(Л)v is also a harmonic in S function. Let Sr be a sphere of the radius r with a center at the origin of coordinates. For all r E (0, 1) we have Q--1 (Л)v E C(Sr).

Then

/

∂S r

Q -- 1 (Л) v ( x ) ds x

= Q -- 1 (0) [

∂S r

v ( x ) ds x = 0 .

Therefore, if i = m , then H -m ) (2 i ) = 0 and then

[ H -m ) (Л) f |x| 2 i v ( x ) ) ds x = H -m ) (2 i )/ v ( x ) ds x ∂S r                                          ∂S r

+ j Q k- 1 (Л) v ( x ) ds x =0 .

If i = m then similarly to the above

4 [ H -m 1 (Л) ( |x| 2 m v ( x ) ) ds x = H -m 1 (2 m )^ / ω nr ∂S r                                       ω nr ∂S

v ( x ) ds x = H -m 1 (2 m ) v (0) , r

where ш П is the surface area of the sphere dS r . Therefore for the function u ( x ) the equality

ω n ∂S r

H -m 1 (Л) u ( x ) ds x

-- 1

= X .        H -m 1 (Л) ( ix| 2 ' ' ( x ))

i =0 ш п dSrr          V          7

ds x = H -m 1 (2 m ) U m (0) .

holds. Since u E Cк 1(- S ) , then dividing this equality on H -m ) (2 m ) = 0 and taking the limit as r ^ 1 we obtain the lemma’s statement (15).

Theorem 3. For any k-harmonic in the unit ball S function u E Ck ( S ) the equality

Список литературы On the mean-value property for polyharmonic functions

  • Stein, E.M. Introduction to Fourier Analysis on Euclidian Spaces/E. M. Stein, G. Weiss. -Princeton Univ. Press, Princeton, NJ, 1971.
  • Dalmasso, R. On the Mean-Value Property of Polyharmonic Functions/Dalmasso R.//Studia Sci. Math. Hungar. -2010. -V. 47, № 1. -P. 113-117.
  • Карачик, В.В. О некоторых специальных полиномах и функциях/В.В. Карачик//Сибирские электронные математические известия. -2013. -Т. 10. -C. 205-226.
  • Карачик, В.В. Построение полиномиальных решений некоторых краевых задач для уравнения Пуассона/В.В. Карачик//ЖВМиМФ. -2011. -Т. 51, № 9. -C. 1674-1694.
  • Карачик, В.В. Об одной задаче для полигармонического уравнения в шаре/В.В. Карачик//Сибирский математический журнал. -1991. -Т. 32, № 5. -С. 51-58.
  • Карачик, В.В. Об одном представлении аналитических функций гармоническими/В.В. Карачик//Математические труды. -2007. -Т. 10, № 2. -C. 142-162.
  • Karachik, V.V. On Some Special Polynomials/V.V. Karachik//Proceedings of American Mathematical Society. -2004. -V. 132, № 4. -P. 1049-1058.
  • Менихес, Л.Д. О регуляризуемости некоторых классов отображений, обратных к интегральным операторам/Л.Д. Менихес//Математические заметки. -1999. -Т. 65, № 2. -С. 222-229.
  • Menikhes, L.D. On Sufficient Condition for Regularizability of Linear Inverse Problems/L.D. Menikhes//Mathematical Notes. -2007. -V. 82, № 1-2. -P. 242-246.
Еще
Статья научная