On topological structure of some sets related to the normalized ricci flow on generalized Wallach spaces
Автор: Abiev Nurlan Abievich
Журнал: Владикавказский математический журнал @vmj-ru
Статья в выпуске: 3 т.17, 2015 года.
Бесплатный доступ
We study topological structures of the sets $(0,1/2)^3 \cap \Omega$ and $(0,1/2)^3 \setminus \Omega$, where $\Omega$ is one special algebraic surface defined by a symmetric polynomial of degree $12$. These problems arise in studying of general properties of degenerate singular points of dynamical systems obtained from the~normalized Ricci flow on generalized Wallach spaces. Our main goal is to prove the connectedness of $(0,1/2)^3 \cap \Omega$ and to determine the number of connected components of $(0,1/2)^3 \setminus \Omega$.
Riemannian metric, generalized wallach space, normalized ricci flow, dynamical system, degenerate singular point of dynamical system, real algebraic surface, singular point of real algebraic surface
Короткий адрес: https://sciup.org/14318509
IDR: 14318509
Список литературы On topological structure of some sets related to the normalized ricci flow on generalized Wallach spaces
- Abiev N. A., Arvanitoyeorgos A., Nikonorov Yu. G. and Siasos P.} The dynamics of the Ricci flow on generalized Wallach spaces//Differ. Geom. Appl.-2014.-Vol. 35.-P. 26-43.
- Abiev N. A., Arvanitoyeorgos A., Nikonorov Yu. G. and Siasos P. The Ricci flow on some generalized Wallach spaces//Geometry and its Applications (Eds. V. Rovenski, P. Walczak).-Switzerland: Springer, 2014.-P.~3-37.-(Springer Proceedings in Math. & Statistics; Vol. 72).
- Abiev N. A., Arvanitoyeorgos A., Nikonorov Yu. G., Siasos P. The normalized Ricci flow on generalized Wallach spaces//Math. Forum; Vol. 8, p. 1. Stud. Math. Anal.-Vladikavkaz: SMI VSC RAS, 2014.-P.~25-42.-(Review of Science: The South of Russia).-.
- Basu S., Pollack R. and Roy M.-F. Algorithms in Real Algebraic Geometry.-Berlin: Springer-Verlag, 2006.-x+662 p.-(Algorithms and Computation in Math. Vol.10).
- Batkhin A. B. and Bruno A. D. Investigation of a real algebraic surface//Programming and Computer Software.-2015.-Vol.41, \No 2.-P.~74-83.
- Bruce J. W. and Giblin P. J. Curves and Singularities. A Geometrical Introduction to Singularity Theory.-Cambridge: Cambridge Univ. Press, 1984.-xii+222 p.
- Chen Zhiqi, Kang Yifang and Liang Ke. Invariant Einstein Metrics on Three-Locally-Symmetric Spaces.-2014.-URL: arXiv:1411.2694.-(Preprint).
- Chen Zhiqi, Kang Yifang and Liang Ke. Invariant Einstein Metrics on Three-Locally-Symmetric Spaces.-2014.-URL: arXiv:1411.2694.-(Preprint).
- Chow B. and Knopf D. The Ricci Flow: an Introduction.-Providence, RI: AMS, 2004.-xii+325p.-(Math. Surveys and Monogr.; Vol.~110).
- Lomshakov A. M., Nikonorov Yu. G. and Firsov E.V. On invariant Einstein metrics on three-locally-symmetric spaces//Dokl. Math.-2002.-Vol. 66, \No 2.-P. 224-227.
- Nikonorov Yu.G. On a class of homogeneous compact Einstein manifolds//Sib. Mat. Zh.-2000.-Vol. 41, \No 1.-P. 200-205.-; English transl.: Sib. Math. J.-2000.-Vol. 41, \No 1.-P. 168-172.
- Nikonorov Yu. G. Classification of Generalized Wallach Spaces.-2014.-URL: arXiv:1411.3131.-(Preprint).
- Nikonorov Yu.G., Rodionov E. D. and Slavskii V. V. Geometry of homogeneous Riemannian manifolds//J. Math. Sci.-2007.-Vol. 146, \No 7.-P. 6313-6390.
- Silhol R. Real Algebraic Surfaces.-Berlin: Springer-Verlag, 1989.-x+215~p.-(Lecture Notes Math.; Vol. 1392).
- Topping P. Lectures on the Ricci Flow.-Cambridge: Cambridge Univ. Press, 2006.-x+113 p.-(London Math. Soc. Lecture Note Ser.; Vol. 325).