Optimal and Appropriate Job Allocation Algorithm for Skilled Agents under a Server Constraint

Автор: Mijanur Rahaman, Md. Masudul Islam

Журнал: International Journal of Education and Management Engineering @ijeme

Статья в выпуске: 1 vol.13, 2023 года.

Бесплатный доступ

In a combinatorial auction, there has a server, some agents, and some jobs which can be used to reach efficient resource and job allocations among the agents. In our paper, we have shown how any server can achieve maximum throughput as well as maximum profit based on some server constraints where each agent has one or more skills to perform those jobs on a priority basis which can be executed in a whole or partial. This algorithm can effectively distribute the appropriate job allocation among skilled agents with proper acknowledgment to the server after a certain period.

Agents, job allocation, server, scheduling, optimal, algorithm, combinatorial auction

Короткий адрес: https://sciup.org/15018584

IDR: 15018584   |   DOI: 10.5815/ijeme.2023.01.02

Список литературы Optimal and Appropriate Job Allocation Algorithm for Skilled Agents under a Server Constraint

  • Klaus Jansen, Lars Prädel, Ulrich M. Schwarz, Ola Svensson, “Faster Approximation Algorithms for Scheduling with Fixed Jobs,” Proceedings of the Seventeenth Computing on The Australasian Theory Symposium, vol. 119, pp. 3–10, 2011.
  • “Scheduling Algorithms,” Springer.com. [Online]. Available: https://www.springer.com/gp/book/9783540695158. [Accessed: 19-Aug-2021].
  • L. Kleinrock and R. R. Muntz, “Processor sharing queueing models of mixed scheduling disciplines for a time-shared system,” J. ACM, vol. 19, no. 3, pp. 464–482, 1972.
  • O. Rusanova and A. Korochkin, “Scheduling problems for parallel and distributed systems,” ACM SIGAda Ada Lett., vol. XIX, no. 3, pp. 195–201, 1999.
  • Tompkins, "Optimization techniques for task allocation and scheduling in distributed multi-agent operations", Hdl.handle.net, 2021. [Online]. Available: http://hdl.handle.net/1721.1/16974. [Accessed: 21- Aug- 2021].
  • J. Bar-Ilan, G. Kortsarz and D. Peleg, Greedy approximation algorithms. Rehovot, Israel: Weizmann Institute of Science, Dept. of Applied Mathematics and Computer Science, 1992.
  • “Scheduling algorithms,” Ctl.ua.edu, 2012. [Online]. Available: http://www.ctl.ua.edu/math103/scheduling/scheduling_algorithms.htm. [Accessed: 19-Aug-2021].
  • Wikipedia contributors, “Multilevel feedback queue,” Wikipedia, The Free Encyclopedia, 11-Jan-2021. [Online]. Available: http://en.wikipedia.org/w/index.php?title=Multilevel_feedback_queue&oldid=999660595. [Accessed: 19-Aug-2021].
  • Wikipedia contributors, “Generalized assignment problem,” Wikipedia, The Free Encyclopedia, 27-Nov-2020. [Online]. Available: http://en.wikipedia.org/w/index.php?title=Generalized_assignment_problem&oldid=990955957. [Accessed: 19-Aug-2021].
Еще
Статья научная