Optimal Control Approach for Solving Linear Volterra Integral Equations

Автор: Sohrab Effati, Mohammad Hadi Noori Skandari

Журнал: International Journal of Intelligent Systems and Applications(IJISA) @ijisa

Статья в выпуске: 4 vol.4, 2012 года.

Бесплатный доступ

In this paper we present a new approach for linear Volterra integral equations that is based on optimal control theory. Some optimal control problems corresponding Volterra integral equation be introduced which we solve these problems by discretization methods and linear programming approaches. Finally, some examples are given to show the efficiency of approach.

Volterra integral equations, Optimal control, Linear programming

Короткий адрес: https://sciup.org/15010241

IDR: 15010241

Список литературы Optimal Control Approach for Solving Linear Volterra Integral Equations

  • K. Atkinson, The numerical solution of integral equations of the second kind, Comberidge University press, 1999.
  • K. Atkinson and W. Han, Theoretical Numerical Analysis: A Functional Analysis Framework, vol. 39 of Texts in Applied Mathematics, Springer, Dordrecht, The Netherlands, 3rd edition, 2009.
  • C. T. H. Baker, The Numerical Treatment of Integral Equations, Monographs on Numerical Analysis, Clarendon Press, Oxford, UK, 1977.
  • A. J. Jerri, Introduction to integral equations with applications, Wiley, London, 1999.
  • A. M. Wazwaz, A First Course in Integral Equations, WSPC, New Jersey, USA 1997.
  • E. Babolian and A. Davary, Numerical Implementation of Adomian Decomposition Method for Linear Volterra Integral Equations for the Second Kind., Applied Mathematics and Computation, Vol. 165, pp. 223-227, 2005.
  • W. F. Blyth, R.L. May, Widyaningsih, P., .The Solution of Integral Equations Using Walsh Functions and a Multigrid Approach, In J. Noye et al., Editors, Computational Techniques and Applications: CTAC97. Proceedings, 99-106. World Scientific, Singapore, 1998.
  • W.F. Blyth, R.L. May and P. Widyaningsih, Volterra Integral Equations Solved in Fredholm Form Using Walsh Functions, Anziam J, Vol. 45 (E), pp. 269-282, 2004.
  • S. Bhattacharya and B. N. Mandal, Use of Bernstein Polynomials in Numerical Solutions of Volterra Integral Equations, Applied Mathematical Sciences, Vol. 2, no. 36, 1773 – 1787, 2008.
  • J. G Blom, H. Brunner, Jun, Algorithm 689: Discretized collocation and iterated collocation for nonlinear Volterra integral equations of the second kind. ACM Trans. Math. Software, Vol. 17, no. 2, pp. 167–177, 1991.
  • H. Brunner, A. Makroglou and R.K. Miller, Mixed Interpolation Collocation Methods for first and Second Volterra Integro-Differential Equations with Periodic Solution., Appl. Numer. Math, Vol. 23, pp. 381-402, 1997.
  • H. Brunner, Collocation Methods for Volterra Integral and Related Functional Equations Methods, Cambridge University Press 2004.
  • H. Brunner, The numerical solution of weakly singular Volterra integral equations by collocation on graded meshes. Math. Comp. Vol. 45, no. 172, pp. 417–437, 1985.
  • H. Brunner, Polynomial spline collocation methods for Volterra integro-differential equations with weakly singular kernels. IMA J. Numer. Anal. Vol. 6, no. 2, pp. 221–239, 1986.
  • T. Tang, A note on collocation methods for Volterra integro-differential equations with weakly singular kernels. IMA J. Numer. Anal, Vol. 13, no. 1, pp. 93–99, 1993.
  • E. Hairer, C. Lubich and M. Schlichte, Fast numerical solution of nonlinear Volterra convolution equations. SIAM J, Sci. Stat. Comput. Vol. 6, no. 3, pp. 531–541, 1985.
  • K. Maleknejad and N. Aghazadeh, “Numerical solution of Volterra integral equations of the second kind with convolution kernel by using Taylor-series expansion method,” Applied Mathematics and Computation, Vol. 161, no. 3, pp. 915–922, 2005.
  • Y. Ren, B. Zhang and H. Qiao, A simple Taylor-series expansion method for a class of second kind integral equations, J. Comput. Appl. Math. Vol. 110, pp 15–24, 1999.
  • A. M, Wazwaz, Two Methods for Solving Integral Equations., Appl. Math. Comput., 77, 1996, pp. 79.89.
  • E. Deeba, S. A. Khuri and S. Xie, An Algorithm for Solving a Nonlinear Integro-Differential Equation., Appl. Math. Comput., Vol. 115, pp. 123.131, 2000.
  • C. Canuto, M.Y. Hussaini, A. Quarteroni and T.A. Zang, Spectral Methods: Fundamentals in Single Domains, Springer-Verlag 2006.
  • L. M. Delves and J. L. Mohanmed, Computational Methods for Integral Equations, Cambridge University Press, 1985.
  • G.N. Elnagar and M. Kazemi, Chebyshev spectral solution of nonlinear Volterra-Hammerstein integral equations, J. Comput. Appl. Math., Vol. 76, pp. 147-158, 1999.
  • J. S. Hesthaven, S. Gottlieb and D. Gottlieb, Spectral Methods for Time-Dependent Problems. No. 21 in Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge UK. 2007.
  • J. Shen and T. Tang, Spectral and High-Order Methods with Applications, Science Press, Beijing, 2006.
  • T. Tang, X. Xu and J. Cheng, On spectral methods for Volterra type integral equations and the convergence analysis. J. Comp. Math. Vol. 26, no. 6 , pp. 825–837, 2008.
  • H. C. Tian, Spectral Method for Volterra Integral Equation, MSc Thesis, Simon Fraser University 1995.
  • D. M. Bedivan and G. J. Fix, Analysis of finite element approximation and quadrature of Volterra integral equations. Numer. Methods Partial Differential Equations vol. 13, no. 6, pp. 663–672. 1997.
  • M. Muhammad, A. Nurmuhammad, M. Mori, and M. Sugihara, Numerical solution of integral equations by means of the sinc collocation method based on the double exponential transformation. J. Comput. Appl. Math. Vol. 177, pp. 269–286, 2005.
  • J. Rashidinia and M. Zarebnia, New approach for numerical solution of Volterra integral equations of the second kind, IUST International Journal of Engineering Science, Vol. 19, No.5-2, pp. 59-65, 2008.
  • H. Brunner, Lin and Y., Zhang, S. Higher accuracy methods for second-kind Volterra integral equations based on asymptotic expansions of iterated Galerkin methods. J. Integral Equations Appl. Vol. 10, no. 4, pp. 375–396, 1998.
  • Z. Wan, Y. Chen, and Y.Huang, “Legendre spectral Galerkin method for second-kind Volterra integral equations,” Frontiers of Mathematics in China, vol. 4, no. 1, pp. 181–193, 2009.
  • K. Maleknejad, M. Tavassoli Kajani and Y. Mahmoudi, Numerical solution of linear Fredholm and volterra integral equation of the second kind by using Legendre wavelets, Kybernetes, Vol. 32, No. 9/10, pp. 1530-1539, 2003.
  • J. Saberi-nadjafi and M. Heidari, A generalized block-by-block method for solving linear Volterra integral equations, Applied Mathematics and Computation, Vol. 188, pp. 1969-1974, 2007.
  • S. Abbasbandy, “Application of He's homotopy perturbation method to functional integral equations,” Chaos, Solitons and Fractals. Vol. 31, pp. 1243-1247, 2007.
  • S. Abbasbandy, Numerical solution of integral equation: Homotopy perturbation method and Adomian’s decomposition method, Appl. Math. Comput. Vol.173, pp. 493–500, 2006.
  • A. Adawi, F. Awawdeh and H. Jaradat, A Numerical Method for Solving Linear Integral Equations, Int. J. Contemp. Math. Sciences, Vol. 4, no. 10, pp. 485 – 496, 2009.
  • J. Biazar and Z. Ayati, A Maple Program for the Second Kind of Volterra Integral Equations by Homotopy perturbation Method, International Mathematical Forum, Vol. 5, no. 67, pp. 3323 - 3326, 2010.
  • S.J. Liao, Beyond Perturbation: Introduction to the Homotopy Analysis Method, Chapman & Hall/CRC Press, Boca Raton, 2003.
  • J. T. Betts, Practical Methods for Optimal Control and Estimation Using Nonlinear Programming, Siam, Philadelphia, second edition, 2010.
  • D. Burghes and A. Graham, Introduction to control theory, including optimal control, Ellis Horwood, 1980.
  • E. R. Pinch, Optimal control and calculus of variations, Paperback ed. Oxford; New York: Oxford Univercity Press, 1995.
  • D. Jones, M. Tamiz and J. Ries, New development in multiple objective and goal programming, Springer-Verlag Berlin Hiedelberg, 2010.
  • C. K. Chui and G.Chen, Linear systems and optimal control, Springer, 1988.
  • M. S. Bazaraa, J. J. Javis, H. D. Sheralli, linear programming, New York; published by Wiley & Sons, 1990.
  • M. S. Bazaraa, H. D. Sheralli, C. M. Shetty, Nonlinear programming: Theory and Application, New York; published by Wiley & Sons, 2006.
Еще
Статья научная