Partial integral operators of Fredholm type on Kaplansky-Hilbert module over L0
Автор: Eshkabilov Yusup Kh., Kucharov Ramziddin R.
Журнал: Владикавказский математический журнал @vmj-ru
Статья в выпуске: 3 т.23, 2021 года.
Бесплатный доступ
The article studies some characteristic properties of self-adjoint partially integral operators of Fredholm type in the Kaplansky--Hilbert module L0[L2(Ω1)] over L0(Ω2). Some mathematical tools from the theory of Kaplansky--Hilbert module are used. In the Kaplansky--Hilbert module L0[L2(Ω1)] over L0(Ω2) we consider the partially integral operator of Fredholm type T1 (Ω1 and Ω2 are closed bounded sets in Rν1 and Rν2, ν1,ν2∈N, respectively). The existence of L0(Ω2) nonzero eigenvalues for any self-adjoint partially integral operator T1 is proved; moreover, it is shown that T1 has finite and countable number of real L0(Ω2)-eigenvalues. In the latter case, the sequence L0(Ω2)-eigenvalues is order convergent to the zero function. It is also established that the operator T1 admits an expansion into a series of ∇1-one-dimensional operators.
Partial integral operator, kaplansky-hilbert module, l0-eigenvalue
Короткий адрес: https://sciup.org/143177811
IDR: 143177811 | DOI: 10.46698/w5172-0182-0041-c
Список литературы Partial integral operators of Fredholm type on Kaplansky-Hilbert module over L0
- Appell, J., Kalitvin, A. S. and Zabrejko, P. P. Partial Integral Operators and Integro-Differential Equations, New York, Basel, 2000, 578 p.
- Eshkabilov, Yu. Kh. On a Discrete ''Three-Particle'' Schrodinger Operator in the Hubbard Model, Theor. Math. Phys., 2006, vol. 149, no. 2, pp. 1497-1511. DOI: 10.1007/s11232-006-0133-2
- Eshkabilov, Yu. Kh. and Kucharov, R. R. Essential and Discrete Spectra of the Three-Particle Schrodinger Operator on a Lattice, Theor. Math. Phys., 2012, vol. 170, no. 3, pp. 341-353. DOI: 10.1007/s11232-012-0034-5
- Eshkabilov, Yu. Kh. The Efimov Effect for a Model ''Three-Particle'' Discrete Schrodinger Operator, Theor. Math. Phys., 2010, vol. 164, no. 1, pp. 896-904. DOI: 10.1007/s11232-010-0071-x
- Eshkabilov, Yu. Kh. Spectra of Partial Integral Operators with a Kernel of Three Variables, Central European J. Math., 2008, vol. 6, no. 1, pp. 149-157. DOI: 10.2478/s11533-008-0010-3
- Kusraev, A. G. Dominated Operators, Dordrecht etc., Kluwer Academic Publishers, 2000, 445p.
- Kudaybergenov, K. K. ∇-Fredholm Operators in Banach-Kantorovich Spaces, Methods Func. Anal. Topology, 2006, vol. 12, no. 3, pp. 234-242.
- Sarymsakov, T. A. Polupolya i teoriya veroyatnostej [Semifields and Probability Theory], Tashkent, Fan, 1980 (in Russian).
- Akhiezer, N. I. and Glazman, I. M. Teoriya linejnyh operatorov v gilbertovom prostranstve [Theory of Linear Operators in Hilbert Space], Moskva, Nauka, 1966, 544 p. (in Russian).
- Kusraev, A. G. Cyclically Compact Operators in Banach Spaces. Vladikavkaz Math. J., 2000, vol. 2, no. 1, pp. 10-23.