Патогенез начальных стадий тяжелой формы COVID-19

Автор: Голота Александр Сергеевич, Камилова Татьяна Аскаровна, Шнейдер Ольга Вадимовна, Вологжанин Дмитрий Александрович, Щербак Сергей Григорьевич

Журнал: Клиническая практика @clinpractice

Рубрика: Обзоры

Статья в выпуске: 2 т.12, 2021 года.

Бесплатный доступ

С тех пор как SARS-CoV-2 появился среди людей, научное сообщество старалось собрать как можно больше информации, чтобы найти эффективные стратегии сдерживания и лечения этого пандемического коронавируса. Мы провели обзор текущей опубликованной литературы по SARS-CoV-2 с акцентом на особенностях его распространения в тканях и жидкостях организма человека, а также данных об экспрессии его входных рецепторов на клеточной поверхности. COVID-19 разными способами затрагивает множество систем органов. Эти разнообразные проявления связаны с вирусным тропизмом и иммунным ответом организма инфицированного человека, но точные механизмы еще не вполне объяснимы. Мы подчеркиваем широкий органотропизм SARS-CoV-2, поскольку многие исследования выявили вирусные компоненты (РНК, белки) во многих органах, включая иммунные клетки, глотку, трахею, легкие, кровь, сердце, сосуды, кишечник, мозг, почки и мужские репродуктивные органы. Вирусные компоненты присутствуют в различных жидкостях организма, таких как слизь, слюна, моча, спинномозговая жидкость, сперма и грудное молоко. ACE2 - основной рецептор входа SARS-CoV-2 - экспрессируется на разных уровнях во многих тканях по всему человеческому телу, но уровни его экспрессии не всегда соответствуют обнаружению SARS-CoV-2, что указывает на сложное взаимодействие между вирусом и человеком. Мы также освещаем роль ренин-ангиотензин-альдостероновой системы и ее ингибиторов в контексте COVID-19. Кроме того, SARS-CoV-2 обладает различными стратегиями, широко используемыми в различных тканях, для уклонения от противовирусного врожденного иммунитета. Таргетирование медиаторов уклонения вируса от иммунитета может блокировать его репликацию у пациентов с COVID-19. Вместе эти данные проливают свет на текущее представление о патогенезе SARS-CoV-2 и закладывают основу для лучшей диагностики и лечения пациентов с COVID-19.

Еще

Covid-19, коронавирус, sars-cov-2, рецептор ace2, противовирусный иммунитет, патогенез covid-19

Короткий адрес: https://sciup.org/143175854

IDR: 143175854   |   DOI: 10.17816/clinpract71351

Список литературы Патогенез начальных стадий тяжелой формы COVID-19

  • WHO Coronavirus Disease (COVID-19) Dashboard [Internet]. Available from: https://covid19.who.int/
  • Mohandas S, Vairappan B. SARS-CoV-2 infection and the gut-liver axis. J Dig Dis. 2020;21(12):687-695. doi: 10.1111/1751-2980.12951
  • Ahmadian E, Khatibi SM, Soofiyani SR, et al. COVID-19 and kidney injury: pathophysiology and molecular mechanisms. Rev Med Virol. 2021;31(3):e2176. doi: 10.1002/rmv.2176
  • Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271-280. doi: 10.1016/j.cell.2020.02.052
  • Johnson AS, Fatemi R, Winlow W. SARS-CoV-2 bound human serum albumin and systemic septic shock. Front Cardiovasc Med. 2020;7:153. doi: 10.3389/fcvm.2020.00153
  • Trypsteen W, van Cleemput J, van Snippenberg W, et al. On the whereabouts of SARS-CoV-2 in the human body: A systematic review. PLoS Pathog. 2020;16(10):e1009037. doi: 10.1371/journal.ppat.1009037
  • Satarker S, Nampoothiri M. Structural proteins in severe acute respiratory syndrome coronavirus-2. Arch Med Res. 2020;51(06):482-491. doi: 10.1016/j.arcmed.2020.05.012. 291
  • Ackermann M, Verleden SE, Kuehnel M, et al. Pulmonary vascular endotheliales, thrombosis, and angiogenesis in Covid-19. N Engl J Med. 2020;383(2):120-128. doi: 10.1056/NEJMoa2015432
  • Cabibbo G, Rizzo GE, Stornello C, et al. SARS-CoV-2 infection in patients with a normal or abnormal liver. J Viral Hepat. 2021 ;28(1 ):4-11. doi: 10.1111/jvh.13440
  • Gheblawi M, Wang K, Viveiros A, et al. Angiotensin-con-verting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system: celebrating the 20th anniversary of the discovery of ACE2. Circ Res. 2020;126(10):1456-1474. doi: 10.1161/CIRCRESAHA.120.317015
  • Lax SF, Skok K, Zechner P, et al. Pulmonary arterial thrombosis in COVID-19 with fatal outcome : results from a prospective, single-center, clinicopathologic case series. Ann Intern Med. 2020;173(5):350-361. doi: 10.7326/M20-2566
  • Rosen HR, O'Connell C, Nadim MK. Extrapulmonary manifestations of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infection. J Med Virol. 2020;10.1002/jmv.26595. doi: 10.1002/jmv.26595
  • Wang J, Saguner AM, An J, et al. Dysfunctional coagulation in COVID-19: from cell to bedside. Adv Ther. 2020b;37(7):3033-3039. doi: 10.1007/s12325-020-01399-7
  • Chen DY, Khan N, Close BJ, et al. SARS-CoV-2 desensitizes host cells to interferon through inhibition of the JAK-STAT pathway. bioRxiv. 2020;2020.10.27.358259. doi: 10.1101/2020.10.27.358259
  • Li MY, Li L, Zhang Y, Wang XS. Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues. Infect Dis Poverty. 2020;9(1):45. doi: 10.1186/s40249-020-00662-x
  • Unudurthi SD, Luthra P, Bose RJ. Cardiac inflammation in COVID-19: Lessons from heart failure. Life Sci. 2020; 260:118482. doi: 10.1016/j.lfs. 2020.118482
  • Nicin L, Abplanalp WT, Mellentin H, et al. Cell type-specific expression of the putative SARS-CoV-2 receptor ACE2 in human hearts. Eur Heart J. 2020;41(19):1804-1806. doi: 10.1093/eurheartj/ehaa311
  • Gencer S, Lacy M, Atzler D, et al. Immunoinflammatory, throm-bohaemostatic, and cardiovascular mechanisms in COVID-19. Thromb Haemost. 2020;120(12):1629-1641. doi: 10.1055/s-0040-1718735
  • Barker H, Parkkila S. Bioinformatic characterization of an-giotensin-converting enzyme 2, the entry receptor for SARS-CoV-2. PLoS One. 2020;15(10):e0240647. doi: 10.1371/journal.pone.0240647
  • Daly JL, Simonetti B, Klein K, et al. Neuropilin-1 is a host factor for SARS-CoV-2 infection. Science. 2020;370(6518):861-865. doi: 10.1126/science.abd3072
  • Wrapp D, Wang N, Corbett KS, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367(6483):1260-1263. doi: 10.1126/science.abb2507
  • Huang N, Perez P, Kato T, et al. Integrated single-cell atlases reveal an oral SARS-CoV-2 infection and transmission axis. medRxiv. 2020;2020.10.26.20219089. doi: 10.1101/2020.10.26.20219089
  • Borczuk AC, Salvatore SP, Seshan SV, et al. COVID-19 pulmonary pathology: a multi-institutional autopsy cohort from Italy and New York City. Mod Pathol. 2020;33(11):2156-2168. doi: 10.1038/s41379-020-00661 -1
  • Lamers MM, Beumer J, van der Vaart J, et al. SARS-CoV-2 productively infects human gut enterocytes. Science. 2020;369(6499):50-54. doi: 10.1126/science.abc1669
  • Qian Q, Fan L, Liu W, et al. Direct evidence of active SARS-CoV-2 replication in the intestine. Clin Infect Dis. 2020;ciaa925. doi: 10.1093/cid/ciaa925
  • Wang Y, Liu S, Liu H, et al. SARS-CoV-2 infection of the liver directly contributes to hepatic impairment in patients with COVID-19. J Hepatol. 2020;73(4):807-816. doi: 10.1016/j.jhep.2020.05.002
  • Puelles VG, Lütgehetmann M, Lindenmeyer MT. Multiorgan and renal tropism of SARS-CoV-2. N Engl J Med. 2020;383(6):590-592. doi: 10.1056/NEJMc2011400.271
  • Lindner D, Fitzek A, Bräuninger H, et al. Association of cardiac infection with SARS-CoV-2 in confirmed COVID19 autopsy cases. JAMA Cardiol. 2020;5(11):1281-1285. doi: 10.1001/jamacardio.2020.3551
  • Song E, Zhang C, Israelow B, et al. Neuroinvasion of SARS-CoV-2 in human and mouse brain. J Exp Med. 2021;218(3):e20202135. doi: 10.1084/jem.20202135
  • Levi M, Thachil J, Iba T, Levy JH. Coagulation abnormalities and thrombosis in patients with COVID-19. Lancet Haematol. 2020;7(6):438-440. doi :10.1016/S2352-3026(20)30145-9
  • Cantuti-Castelvetri L, Ojha R, Pedro LD, et al. Neuro-pilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science. 2020;370(6518):856-860. doi: 10.1126/science.abd2985
  • Wei J, Alfajaro MM, DeWeirdt PC, et al. Genome-wide CRISPR screens reveal host factors critical for SARS-CoV-2 infection. Cell. 2021;184(1):76-91.e13. doi: 10.1016/j.cell.2020.10.028
  • South AM, Diz DI, Chappell MC. COVID-19, ACE2, and the cardiovascular consequences. Am J Physiol Heart Circ Physiol. 2020;318(05):H1084-H1090. doi: 10.1152/ajpheart.00217.2020
  • Wang K, Gheblawi M, Oudit GY. Angiotensin converting enzyme 2: a double-edged sword. Circulation. 2020b;142(5):426-428. doi: 10.1161/CI RCULATIONAHA.120.047049
  • Verdecchia P, Cavallini C, Spanevello A, Angeli F. The pivotal link between ACE2 deficiency and SARS-CoV-2 infection. Eur J Intern Med. 2020;76:14-20. doi: 10.1016/j.ejim.2020.04.037
  • Mehra MR, Desai SS, Kuy S, et al. Cardiovascular disease, drug therapy, and mortality in COVID-19. N Engl J Med. 2020;382(25):e102. doi: 10.1056/NEJMoa2007621
  • Chen D, Li X, Song Q, et al. Assessment of hypokalemia and clinical characteristics in patients with Coronavirus Disease 2019 in Wenzhou, China. JAMA Netw Open. 2020;3(6):e2011122. doi: 10.1001/jamanetworkopen.2020.11122
  • Malha L, Mueller FB, Pecker MS, et al. COVID-19 and the renin-angiotensin system. Kidney Int Rep. 2020;5(5):563-565. doi: 10.1016/j.ekir.2020.03.024
  • Tolouian R, Vahed SZ, Ghiyasvand S, et al. COVID-19 interactions with angiotensin-converting enzyme 2 (ACE2) and the kinin system; looking at a potential treatment. J Renal Inj Prev. 2020;9(2):e19. doi: 10.34172/jrip.2020.19
  • Meini S, Zanichelli A, Sbrojavacca R, et al. Understanding the pathophysiology of COVID-19: could the contact system Be the key? Front Immunol. 2020;11:2014. doi: 10.3389/fimmu.2020.02014
  • Van de Veerdonk FL, Netea MG, van Deuren M, et al. Kallikrein-kinin blockade in patients With COVID-19 to prevent acute respiratory distress syndrome. Elife. 2020;9:e57555. doi: 10.7554/eLife.57555
  • Garvin MR, Alvarez C, Miller JI, et al. A mechanistic model and therapeutic interventions for COVID-19 involving a RAS-mediated bradykinin storm. Elife. 2020;9:e59177. doi: 10.7554/eLife.59177
  • Fu Y, Cheng Y, Wu Y. Understanding SARS-CoV-2-mediated inflammatory responses: from mechanisms to potential therapeutic tools. Virol Sin. 2020;35(3):266-671. doi: 10.1007/s12250-020-00207-4
  • Rabi FA, Al Zoubi MS, Kasasbeh GA, et al. SARS-CoV-2 and coronavirus disease 2019: what we know so far. Pathogens. 2020;9(3):231. doi: 10.3390/pathogens9030231
  • Bermejo-Martin JF, Almansa R, Menendez R, et al. Lym-phopenic community acquired pneumonia as signature of severe COVID-19 infection. J Inf Secur. 2020;80(5):e23-e24. doi: 10.1016/j.jinf.2020.02.029
  • Diao B, Wang C, Tan Y, et al. Reduction and functional exhaustion of T cells in patients with Coronavirus Disease 2019 (COVID-19). Front Immunol. 2020;11:827. doi: 10.3389/fimmu.2020.00827
  • Pontelli MC, Castro IA, Martins RB, et al. Infection of human lymphomononuclear cells by SARS-CoV-2. bioRxiv. 2020;2020.07.28.225912. doi: 10.1101/2020.07.28.225912
  • Merad M, Martin JC. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nat Rev Immunol. 2020;20(6):355-362. doi: 10.1038/s41577-020-0331-4
  • Blanco-Melo D, Nilsson-Payant BE, Liu W-C, et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell. 2020; 181(5): 1036-1045.e9. doi: 10.1016/j.cell.2020.04.026
  • Del Valle DM, Kim-Schulze S, Huang C, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506. doi: 10.1016/S0140-6736(20)30183-5
  • Jose RJ, Manuel A. COVID-19 cytokine storm: the interplay between inflammation and coagulation. Lancet Respir Med. 2020;8(6):e46-e47. doi: 10.1016/S2213-2600(20)30216-2
  • Mehta P, McAuley DF, Brown M, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033-1034. doi: 10.1016/S0140-6736(20)30628-0
  • Zheng M, Williams EP, Malireddi RK, et al. Impaired NLRP3 inflammasome activation/pyroptosis leads to robust inflammatory cell death via caspase8/RlpK3 during coronavirus infection. J Biol Chem. 2020;295(41):14040-14052. doi: 10.1074/jbc.RA120.015036
  • Henderson LA, Canna SW, Schulert GS, et al. On the alert for cytokine storm: immunopathology in COVID-19. Arthritis Rheumatol. 2020;72(7):1059-1063. doi: 10.1002/art.41285
  • Mangalmurti N, Hunter CA. Cytokine storms: understanding COVID-19. Immunity. 2020;53(1):19-25. doi: 10.1016/j.immuni.2020.06.017
  • Hadjadj J, Yatim N, Barnabei L, et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science. 2020;369(6504):718-724. doi: 10.1126/science.abc6027
  • Vabret N, Britton GJ, Gruber C, et al. Sinai Immunology Review Project. Immunology of COVID-19: current state of the science. Immunity. 2020;52(6):910-941. doi: 10.1016/j.immuni.2020.05.002
  • Saris A, Reijnders TD, Nossent EJ, et al. Distinct cellular immune profiles in the airways and blood of critically ill patients with COVID 19. Thorax. 2021;thoraxjnl-2020-216256. doi: 10.1136/thoraxjnl-2020-216256
  • Lucas C, Wong P, Klein J, et al. Longitudinal analyses reveal immunological misfiring in severe COVID-19. Nature. 2020;584(7821):463-469. doi: 10.1038/s41586-020-2588-y
  • Karki R, Sharma BR, Tuladhar S, et al. COVID-19 cytokines and the hyperactive immune response: synergism of TNF-a and IFN-y in triggering inflammation, tissue damage, and death. me-dRxiv. 2020;2020.10.29.361048. doi: 10.1101/2020.10.29.361048
  • Locatelli F, Jordan MB, Allen C, et al. Emapalumab in children with primary hemophagocytic lymphohistiocytosis. N Engl J Med. 2020;382(19):1811-1822. doi: 10.1056/NEJMoa1911326
  • Atal S, Fatima Z. IL-6 inhibitors in the treatment of serious COVID-19: a promising therapy? Pharmaceut Med. 2020;34(4):223-231. doi: 10.1007/s40290-020-00342-z
  • Huet T, Beaussier H, Voisin O, et al. Anakinra for severe forms of COVID-19: a cohort study. Lancet Rheumatol. 2020;2(7):e393-e400. doi: 10.1016/S2665-9913(20)30164-8
  • Lythgoe MP, Middleton P. Ongoing clinical trials for the management of the COVID-19 pandemic. Trends Pharmacol Sci. 2020;41 (6):363-382. doi: 10.1016/j.tips.2020.03.006
  • Kox M, Waalders NJ, Kooistra EJ, et al. Cytokine levels in critically ill patients with COVID-19 and other conditions. JAMA. 2020;324(15):1565-1567. doi: 10.1001/jama.2020.17052
  • Leisman DE, Ronner L, Pinotti R, et al. Cytokine elevation in severe and critical COVID-19: a rapid systematic review, meta-analysis, and comparison with other inflammatory syndromes. Lancet Respir Med. 2020;8(12):1233-1244. doi: 10.1016/S2213-2600(20)30404-5
  • McGonagle D, Sharif K, O'Regan A, Bridgewood C. The role of cytokines including interleukin-6 in COVID-19 induced pneumonia and macrophage activation syndrome-like disease. Autoimmun Rev. 2020b;19(06):102537. doi: 10.1016/j.autrev.2020.102537
  • Liao M, Liu Y, Yuan J, et al. Single-cell landscape of bron-choalveolar immune cells in patients with COVID-19. Nat Med. 2020;26(06):842-844. doi: 10.1038/s41591-020-0901-9
  • Feng Z, Diao B, Wang R, et al. The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) directly decimates human spleens and lymph nodes. MedRxiv. 2020a;2:2020.03.27.20045427. doi: 10.1101/2020.03.27.20045427
  • Terpos E, Ntanasis-Stathopoulos I, Elalamy I, et al. Hematological findings and complications of COVID-19. Am J Hematol. 2020;95(7):834-847. doi: 10.1002/ajh.25829.324
  • Zheng HY, Zhang M, Yang CX, et al. Elevated exhaustion levels and reduced functional diversity of T cells in peripheral blood may predict severe progression in COVID-19 patients. Cell Mol Immunol. 2020;17(5):541-543. doi: 10.1038/s41423-020-0401-3
  • Kaneko N, Kuo HH, Boucau J, et al. The loss of Bcl-6 expressing t follicular helper cells and the absence of germinal centers in COVID-19. SSRN (Social Science Research Network). 2020;3652322. doi: 10.2139/ssrn.3652322
  • Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8(4):420-422. doi: 10.1016/S2213-2600(20)30076-X
  • Bastard P, Rosen LB, Zhang Q, et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science. 2020;370(6515):eabd4585. doi: 10.1126/science.abd4585
  • Zhang Q, Bastard P, Liu Z, et al. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science. 2020;370(6515):eabd4570. doi: 10.1126/science.abd4570
  • Wang N, Zhan Y, Zhu L, et al. Retrospective multicenter cohort study shows early interferon therapy is associated with favorable clinical responses in COVID-19 patients. Cell Host Microbe. 2020;28(3):455-464.e2. doi: 10.1016/j.chom.2020.07.005
  • Pan H, Peto R, Henao-Restrepo AM, et al.; WHO Solidarity Trial Consortium. Repurposed antiviral drugs for Covid-19 — Interim WHO Solidarity Trial Results. N Engl J Med. 2021;384(6):497-511. doi: 10.1056/NEJMoa2023184
  • Rao VU, Arakeri G, Subash A, et al. COVID-19: Loss of bridging between innate and adaptive immunity? Med Hypotheses. 2020;144:109861. doi: 10.1016/j.mehy.2020.109861
  • Du SQ, Yuan W. Mathematical modeling of interaction between innate and adaptive immune responses in COVID-19 and implications for viral pathogenesis. J Med Virol. 2020;92(9):1615-1628. doi: 10.1002/jmv.25866
  • Lagunas-Rangel FA. Neutrophil-to-lymphocyte ratio and lymphocyte-to-C-reactive protein ratio in patients with severe cor-onavirus disease 2019 (COVID-19): A meta-analysis. J Med Virol. 2020;92(10):1733-1734. doi: 10.1002/jmv.25819
  • Qin C, Zhou L, Hu Z, et al. Dysregulation of immune response in patients with Coronavirus 2019 (COVID-19) in Wuhan, China. Clin Infect Dis. 2020;71(15):762-768. doi: 10.1093/cid/ciaa248
  • Combes AJ, Courau T, Kuhn NF, et al. Global absence and targeting of protective immune states in severe COVID-19. Nature. 2021;591(7848): 124-130. doi: 10.1038/s41586-021-03234-7
  • Olbei M, Hautefort I, Modos D, et al. SARS-CoV-2 causes a different cytokine response compared to other cytokine storm-causing respiratory viruses in severely ill patients. Front Immunol. 2021;12:629193. doi: 10.3389/fimmu.2021.629193
  • Chang SE, Feng A, Meng W, et al. New-onset IgG autoantibodies in hospitalized patients with COVID-19. medRxiv. 2021;2021.01.27.21250559. doi: 10.1101/2021.01.27.21250559
  • Allali G, Marti C, Grosgurin O, et al. Dyspnea: the vanished warning symptom of COVID-19 pneumonia. J Med Virol. 2020;92(11):2272-2273. doi: 10.1002/jmv.26172
  • Holshue ML, DeBolt C, Lindquist S, et al. First case of 2019 novel coronavirus in the United States. N Engl J Med. 2020;382(10):929-936. doi: 10.1056/NEJMoa2001191
  • Ahmed MU, Hanif M, Ali MJ, et al. Neurological manifestations of COVID-19 (SARS-CoV-2): a review. Front Neurol. 2020;11:518. doi: 10.3389/fneur.2020.00518
  • Ye Q, Wang B, Mao J. The pathogenesis and treatment of the 'cytokine storm' in COVID-19. J Inf Secur. 2020;80(6):607-613. doi: 10.1016/j.jinf.2020.03.037
  • Amraei R, Rahimi N. COVID-19, renin-angiotensin system and endothelial dysfunction. Cells. 2020;9(7):1652. doi: 10.3390/cells9071652
  • Jesenak M, Brndiarova M, Urbancikova I, et al. Immune parameters and COVID-19 infection — associations with clinical severity and disease prognosis. Front Cell Infect Microbiol. 2020;10:364. doi: 10.3389/fcimb.2020.00364
  • CDC. National Center for Health Statistics Homepage. Available from: https://www.cdc.gov/nchs/nvss/vsrr/covid_weekly/ index.htm
  • Lippi G, Mattiuzzi C. Hemoglobin value may be decreased in patients with severe coronavirus disease 2019. Hematol Transfusion Cell Ther. 2020b;42(2):116-117. doi: 10.1016/j.htct.2020.03.001
  • Liu W, Li H. Covid-19: Attacks the 1-beta chain of hemoglobin and captures the porphyrin to inhibit human heme metabolism. ChemRxiv. 2020. doi: 10.26434/chemrxiv.11938173
  • Ahmed SF, Quadeer AA, McKay MR. Preliminary identification of potential vaccine targets for the COVID-19 Coronavirus (SARS-CoV-2) based on SARS-CoV immunological studies. Viruses. 2020;12(3):254. doi: 10.3390/v12030254
  • Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270-273. doi: 10.1038/s41586-020-2012-7
  • Gattinoni L, Chiumello D, Rossi S. COVID-19 pneumonia: ARDS or not? Crit Care. 2020a;24(1):154. doi: 10.1186/s13054-020-02880-z
  • Johnson AS, Fatemi R, Winlow W. SARS-CoV-2 bound human serum albumin and systemic septic shock. Front Cardiovasc Med. 2020;7:153. doi: 10.3389/fcvm.2020.00153
  • Adachi T, Chong JM, Nakajima N, et al. Clinicopathologic and immunohistochemical findings from autopsy of patient with COVID-19, Japan. Emerg Infect Dis. 2020;26(9):2157-2161. doi: 10.3201/eid2609.201353
  • Lippi G, Plebani M. Procalcitonin in patients with severe coronavirus disease 2019 (COVID-19): a meta-analysis. Clin Chim Acta. 2020d;505:190-191. doi: 10.1016/j.cca.2020.03.004
  • Rawson TM, Moore LS, Zhu N, et al. Bacterial and fungal co-infection in individuals with coronavirus: a rapid review to support COVID-19 antimicrobial prescribing. Clin Infect Dis. 2020;71(9):2459-2468. doi: 10.1093/cid/ciaa530
  • Goyal P, Choi JJ, Pinheiro LC, et al. Clinical characteristics of Covid-19 in New York City. N Engl J Med. 2020;382(24):2372-2374. doi: 10.1056/NEJMc2010419
  • Kim D, Quinn J, Pinsky B, et al. Rates of co-infection between SARS-CoV-2 and other respiratory pathogens. JAMA. 2020;323(20):2085-2086. doi: 10.1001/jama.2020.6266
  • Scozzi D, Cano M, Ma L, et al. Circulating mitochondrial DNA is an early indicator of severe illness and mortality from COVID-19. JCI Insight. 2021;6(4):143299. doi: 10.1172/jci.insight.143299
Еще
Статья обзорная