Positive isometries of Orlicz-Kantorovich spaces

Автор: Zakirov B.S., Chilin V.I.

Журнал: Владикавказский математический журнал @vmj-ru

Статья в выпуске: 2 т.25, 2023 года.

Бесплатный доступ

Let B be a complete Boolean algebra, Q(B) the Stone compact of B, and let C∞(Q(B)) be the commutative unital algebra of all continuous functions x:Q(B)→[-∞,+∞], assuming possibly the values ±∞ on nowhere-dense subsets of Q(B). We consider the Orlicz-Kantorovich spaces (LΦ(B,m),∥⋅∥Φ)⊂C∞(Q(B)) with the Luxembourg norm associated with an Orlicz function Φ and a vector-valued measure m, with values in the algebra of real-valued measurable functions. It is shown, that in the case when Φ satisfies the (Δ2)-condition, the norm ∥⋅∥Φ is order continuous, that is, ∥xn∥Φ↓0 for every sequence {xn}⊂LΦ(B,m) with xn↓0. Moreover, in this case, the norm ∥⋅∥Φ is strictly monotone, that is, the conditions |x|≨|y|, x,y∈LΦ(B,m), imply ∥x∥Φ≨∥y∥Φ. In addition, for positive elements x,y∈LΦ(B,m), the equality ∥x+y∥Φ=∥x-y∥Φ is valid if and only if x⋅y=0. Using these properties of the Luxembourg norm, we prove that for any positive linear isometry V:LΦ(B,m)→LΦ(B,m) there exists an injective normal homomorphisms T:C∞(Q(B))→C∞(Q(B)) and a positive element y∈LΦ(B,m) such that V(x)=y⋅T(x) for all x∈LΦ(B,m).

Еще

Banach-kantorovich space, orlicz function, vector-valued measure, positive isometry, normal homomorphism

Короткий адрес: https://sciup.org/143180457

IDR: 143180457   |   DOI: 10.46698/i8046-3247-2616-q

Список литературы Positive isometries of Orlicz-Kantorovich spaces

  • Kusraev, A. G. Dominated Operators, Mathematics and its Applications, vol. 519, Dordrecht, Kluwer Academic Publishers, 2000.
  • Kusraev, A. G. Vektornaya dvoystvennost' i ee prilozheniya [Vekctor Duality and its Applications], Novosibirsk, Nauka, 1985 (in Russian).
  • Zakirov, B. S. The Luxemburg Norm on the Orlicz-Kantorovich Lattices, Uzbek Mathematical Journal, 2007, no. 2, pp. 32-44 (in Russian).
  • Zakirov, B. S. The Orlicz-Kantorovich Lattices, Associated with L0-Valued Measure, Uzbek Mathematical Journal, 2007, no. 4, pp. 18-34 (in Russian).
  • Zakirov, B. S., An Analytical Representation of the L0-Valued Homomorphisms in the Orlicz-Kantorovich Modules, Siberian Advances in Mathematics, 2009, vol. 19, no. 2, pp. 128-149. DOI: 10.3103/S1055134409020047.
  • Banach, S. Theory of Linear Operations, North-Holland, Amsterdam-New-York-Oxford-Tokyo, 1987.
  • Lamperti, J. On the Isometries of Some Function Spaces, Pacific Journal of Mathematics, 1958, vol. 8. pp. 459-466.
  • Fleming, R. and Jamison, J. Isometries on Banach Spaces: Function Spaces, Monographs and Surveys in Pure and Applied Mathematics, vol. 129, London, Chapman and Hall, 2003.
  • Lumer, G. On the Isometries of Reflexive Orlicz Spaces, Annales de l'Institut Fourier, 1963, vol. 13, pp. 99-109.
  • Zaidenberg, M. G. On Isometric Classification Of Symmetric Spaces, Soviet Mathematics — Doklady, 1977, vol. 18, pp. 636-639.
  • Zaidenberg, M. G. A Representation of Isometries of Functional Spaces, Matematicheskaya Fizika, Analiz, Geometriya [Mathematical Physics, Analysis, Geometry], 1997, vol. 4, no. 3, pp. 339-347.
  • Kalton, N. J. and Randrianantoanina, B. Surjective Isometries on Rearrangment-Invariant Spaces, Quarterly Journal of Mathematics, 1994, vol. 45, no. 2, pp. 301-327. DOI: 10.48550/arXiv.math/ 9211208.
  • Braverman, M. Sh. and Semenov, E. M. Isometries on Symmetric Spaces, Soviet Mathematics — Doklady, 1974, vol. 15. pp. 1027-1029.
  • Braverman, M. Sh. and Semenov, E. M. Isometries on Symmetric Spaces, Trudy Nauchno-Issledovatel'skogo Instituta Matematiki Voronezhskogo Universiteta, 1975, vol. 17, pp. 7-18 (in Russian).
  • Arazy, J. Isometries on Complex Symmetric Sequence Spaces, Mathematische Zeitschrift, 1985, vol. 188, pp. 427-431. DOI: 10.1007/BF01159187.
  • Aminov, B. R. and Chilin, V. I. Isometries and Hermitian Operators on Complex Symmetric Sequence Spaces, Siberian Advances in Mathematics, 2017, vol. 27, no. 4, pp. 239-251. DOI: 10.3103/S1055134417040022.
  • Abramovich, Y. Isometries of Norm Latties, Optimizatsiya, 1988, vol. 43 (60), pp. 74-80 (in Russian).
  • Veksler, A. Positive Isometries of Normed Solid Function Spaces, Proceedings of the Tashkent State University "Mathematical Analysis and Probability Theory", 7 p. 1984 (in Russian).
  • Abramovich, Y. Operators Preserving Disjointess on Rearrangement Invariant Spaces, Pacific Journal of Mathematics, 1991, vol. 148, no. 2, pp. 201-206. DOI: 10.2140/pjm.1991.148.201.
  • Abdullaev, R. and Chilin, V. Positive Isometries of Orlicz Spaces, Collection of Materials of the International Conference KROMSH-2020, Simferopol, Polyprint, 2020, pp. 28-31.
  • Sukochev, F. and Veksler, A. Positive Linear Isometries in Symmetric Operator Spaces, Integral Equations and Operator Theory, 2018, vol. 90, no. 5. DOI: 10.1007/s00020-018-2483-1.
  • Vladimirov, D. A. Bulevy algebry [Boolean Algebras], Moscow, Nauka, 1969 (in Russian).
  • Vulikh, B. Z. Vvedenie v teoriyu poluuporyadochennykh prostranstv [Introduction to the Theory of Partially Ordered Spaces], Moscow, Fizmatgiz, 1961 (in Russian).
  • Zakirov, B. S. and Chilin, V. I. Decomposable Measures with Values in Order Complete Vector Lattices, Vladikavkaz Mathematical Journal, 2008, vol. 10, no. 4, pp. 31-38 (in Russian).
  • Rubshtein, B. A., Grabarnik, G. Ya., Muratov, M. A. and Pashkova, Yu. S. Foundations of Symmetric Spaces of Measurable Functions. Lorentz, Marcinkiewicz and Orlicz Spaces, Springer International Publishing, 2016.
  • Edgar, G. A. and Sucheston, L. Stoping Times and Directed Processes, Encyclopedia of Mathematics and its Applications, vol. 47, Cambridge University Press, 1992.
  • Chilin, V. I. and Katz, A. A. A Note on Extensions of Homomorphisms of Boolean Algebras of Projections of Commutative AW*-Algebras, Proceedings of the International Conference on Topological Algebras and Their Applications, ICTAA 2021, pp. 62-73.
Еще
Статья научная