Постковидная астения, саркопения и генерализованная мышечная слабость у гериатрических больных

Автор: Белопасов В.В., Веселова Д.К.

Журнал: Клиническая практика @clinpractice

Рубрика: Обзоры

Статья в выпуске: 2 т.15, 2024 года.

Бесплатный доступ

Астения, саркопения, ограничение двигательной активности значительно распространены среди гериатрических пациентов в постковидном периоде. Внедрение SARS-CoV-2 в организм человека запускает системные воспалительные реакции, оказывая прямое и опосредованное патологическое воздействие на скелетные мышцы. Проявлениями постковидного синдрома могут быть дисфункциональные нарушения органов и систем, включающие астению, мышечную слабость, одышку, боль в груди, когнитивные нарушения, депрессию, тревогу и нарушения сна. Сопутствующие гипоксемия, коморбидность и длительная гиподинамия способствуют изменениям структуры и функциональности мышечных волокон. Одним из новейших диагностических трендов является акцент на оценку индекса ALMI, свидетельствующего о том, что снижение мышечной массы верхних и нижних конечностей является возможной причиной развития функциональных ограничений у пациентов, перенёсших COVID-19. Реабилитация пациентов, перенёсших COVID-19, предполагает ежедневное выполнение физических упражнений с отягощением с учётом переносимости нагрузок, а также обязательную медикаментозную, нутритивную и психологическую поддержку.

Еще

Астения, саркопения, постковидный период, индекс almi

Короткий адрес: https://sciup.org/143183232

IDR: 143183232   |   DOI: 10.17816/clinpract629475

Список литературы Постковидная астения, саркопения и генерализованная мышечная слабость у гериатрических больных

  • Веселова Д.К., Белопасов В.В. Старческая астения и старческая апатия в повседневной клинической практике в условиях пандемии новой коронавирусной инфекции COVID-19 // Клиническая практика. 2022. Т. 13, № 1. C. 66–78. [Veselova DK, Belopasov VV. Frailty and senile apathy in the everyday clinical practice in the conditions of COVID-19. J Clin Pract. 2022;13(1): 66–78]. EDN: ZRCWPY doi: 10.17816/clinpract104831
  • Dennis A, Wamil M, Alberts J, et al. Multiorgan impairment in lowrisk individuals with post-COVID-19 syndrome: A prospective, community-based study. BMJ Open. 2021;11(3):e048391. EDN: GWXGCT doi: 10.1136/bmjopen-2020-048391
  • Kim JW, Yoon JS, Kim EJ, et al. Prognostic implication of baseline sarcopenia for length of hospital stay and survival in patients with coronavirus disease 2019. J Gerontol A Biol Sci Med Sci. 2021;76(8):e110–e116. doi: 10.1093/gerona/glab085
  • Rovere Querini P, De Lorenzo R, Conte C. Post-COVID-19 follow-up clinic: Depicting chronicity of a new disease. Acta Biomed. 2020;20(9-S):22–28. doi: 10.23750/abm.v91i9-S.10146
  • Rovere-Querini P, Tresoldi C, Conte C, et al. Biobanking for COVID-19 research. Panminerva Med. 2022;64(2):244–252. EDN: OPROIG doi: 10.23736/S0031-0808.20.04168-3
  • Malmstrom TK, Morley JE. SARC-F: A simple questionnaire to rapidly diagnose sarcopenia. JAMDA. 2013;14(8):531–532. doi: 10.1016/j.jamda.2013.05.018
  • Rubenstein LZ, Harker JO, Salva A, et al. Screening for undernutrition in geriatric practice: Developing the shortform mini-nutritional assessment (MNA-SF). J Gerontol. 2001;56(6):M366–372. doi: 10.1093/gerona/56.6.m366
  • Ackermann M, Verleden SE, Kuehnel M, et al. Pulmonary vascular endothlialitis, thombosis, and angiogenesis in COVID-19. NEJM. 2020;383(2):120–128. doi: 10.1056/NEJMoa2015432
  • Puntmann VO, Carerj ML, Wieters I, et al. Outcomes of cardiovascular magnetic resonance imaging in patients recently recovered from coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020;5(11):1265–1273. EDN: RIODCA doi: 10.1001/jamacardio.2020.3557
  • Damanti S, Cilla M, Cilona M, et al. Prevalence of long COVID-19 symptoms after hospital dischargein frail and robust patients. Front Med. 2022;(9):834887. EDN: OMKZAO doi: 10.3389/fmed.2022.834887
  • Tenforde MW, Kim SS, Lindsell CJ, et al. Symptom duration and risk factors for delayed return to usual health among outpatients with COVID- 19 in a multistate health care systems network-- United States. Morbid Mortal Wkly Rep. 2020;69(30):993–998. doi: 10.15585/mmwr.mm6930e1
  • Raveendran AV. Long COVID-19: Challenges in the diagnosis and proposed diagnostic criteria. Diabetes Metab Syndr. 2021;15(1):145–146. doi: 10.1016/j.dsx.2020.12.025
  • Белопасов В.В., Яшу Я., Самойлова Е.М., Баклаушев В.П. Поражение нервной системы при СOVID-19 // Клиническая практика. 2020. Т. 11, № 2. C. 60–80. [Belopasov VV, Yashu Y, Samoilova EM, Baklaushev VP. Nervous system damage in SOVID-19. J Clin Pract. 2020;11(2):60–80]. EDN: JLSSLO doi: 10.17816/clinpract34851
  • Piotrowicz K, Gąsowski J, Michel JP, Veronese N. Post-COVID-19 acute sarcopenia: Physiopathology and management. Aging Clin Exp Res. 2021;33(10):2887–2898. EDN: RHRMZN doi: 10.1007/s40520-021-01942-8
  • De Giorgio MR, Di Noia S, Morciano C, Conte D. The impact of SARS-CoV-2 on skeletal muscles. Acta Myol. 2020;39(4): 307–312. doi: 10.36185/2532-1900-034
  • Van Seben R, Reichardt LA, Aarden JJ, et al. The course of geriatric syndromes in acutely hospitalized older adults: The hospital-ADL study. J Am Med Dir Assoc. 2019;20(2):152–158.e2. doi: 10.1016/j.jamda.2018.08.003
  • Reichardt LA, van Seben R, Aarden JJ, et al. Trajectories of cognitive-affective depressive symptoms in acutely hospitalized older adults: The hospital-ADL study. J Psychosom Res. 2019;(120):66–73. doi: 10.1016/j.jpsychores.2019.03.011
  • Hoyer EH, Needham DM, Atanelov L, et al. Association of impaired functional status at hospital discharge and subsequent rehospitalization. J Hosp Med. 2014;9(5):277–282. doi: 10.1002/jhm.2152
  • Bellelli G, Rebora P, Valsecchi MG, et al.; COVID-19 Monza Team Members. Frailty index predicts poor outcome in COVID-19 patients. Intensive Care Med. 2020;46(8):1634–1636. EDN: SEPGUS doi: 10.1007/s00134-020-06087-2
  • Jones R, Davis A, Stanley B, et al. Risk predictorsand symptom features of long COVID within a broad primary care patientpopulation including both tested and untested patients. Pragmat Obs Res. 2021;(12):93–104. doi: 10.2147/POR.S31618638
  • Shinohara T, Saida K, Tanaka S, Murayama A. Association between frailty and changes in lifestyle and physical or psychological conditions among older adults affected by the coronavirus disease 2019 countermeasures in Japan. Geriatr Gerontol Int. 2021;21(1):39–42. doi: 10.1111/ggi.14092
  • Damanti S, Azzolino D, Roncaglione C, et al. Efficacy of nutritional interventions as stand-alone or synergistic treatments with exercise for the management of sarcopenia. Nutrients. 2019;11(9):1991. doi: 10.3390/nu11091991
  • Yamada M, Kimura Y, Ishiyama D, et al. Effect of the COVID-19 epidemic on physical activity in communitydwelling older adults in Japan: A cross-sectional online survey. J Nutr Health Aging. 2020;24(9):948–950. EDN: HPTQJB doi: 10.1007/s12603-020-1424-2
  • Bahat G. COVID-19 and the renin angiotensin system: Implications for the older adults. J Nutr Health Aging. 2020; 24(7):699–704. EDN: SIOIYR doi: 10.1007/s12603-020-1403-7
  • Ohara DG, Pegorari MS, Dos Santos NL, et al. Respiratory muscle strength as a discriminator of sarcopenia in community-dwelling elderly: A cross-sectional study. J Nutr Health Aging. 2018; 22(8):952–958. EDN: HWRFVK doi: 10.1007/s12603-018-1079-4
  • Белопасов В.В., Белопасова А.В., Веселова Д.К. Инволюционные формы патологии скелетной мускулатуры // Медицинский алфавит. 2022. № 32. С. 17–24. [Belopasov VV, Belopasova AV, Veselova DK. Involutionary forms of skeletal muscle pathology. Meditsinskii alfavit. 2022;(32):17–24]. EDN: WUXSUA doi: 10.33667/2078-5631-2022-32-17-24
  • Barnes M, Heywood AE, Mahimbo A, et al. Acute myocardial infarction and influenza: A meta-analysis of case-control studies. Heart. 2015;101(21):1738–1747. doi: 10.1136/heartjnl-2015-307691
  • Soares MN, Eggelbusch M, Naddaf E, et al. Skeletal muscle alterations in patients with acute COVID-19 and post-acute sequelae of COVID-19. J Cachexia Sarcopenia Muscle. 2022;13(1):11–22. EDN: TAXEUE doi: 10.1002/jcsm.12896
  • Carfi A, Bernabei R, Landi F. Persistent symptoms in patients after acute COVID-19. JAMA. 2020;324(6):603–605. doi: 10.1001/jama.2020.12603
  • Pleguezuelos E, del Carmen A, Llorensi G, et al. Severe loss of mechanical efficiency in COVID-19 patients. J Cachexia Sarcopenia Muscle. 2021;12(4):1056–1063. doi: 10.1002/jcsm.12739
  • Gautam N, Madathil S, Tahani N, et al. Medium-term outcome of severe to critically ill patients with SARS-CoV-2 infection. Clin Infect Dis. 2022;74(2):301–308. doi: 10.1093/cid/ciab341
  • Huang C, Huang L, Wang Y, et al. 6-Month consequences of COVID-19 in patients discharged from hospital: A cohort study. Lancet. 2021;397(10270):220–232. doi: 10.1016/S0140-6736(20)32656-8
  • Sudre CH, Murray B, Varsavsky T, et al. Attributes and predictors of long COVID. Nat Med. 2021;27(4):626–631. EDN: KSEJGQ doi: 10.1038/s41591-021-01292-y
  • Nalbandian A, Sehgal K, Gupta A, et al. Post-acute COVID-19 syndrome. Nat Med. 2021;27(4):601–615. doi: 10.1038/s41591-021-01283-z
  • De Andrade-Junior MC, de Salles IC, de Brito CM, et al. Skeletal muscle wasting and function impairment in intensive care patients with severe COVID-19. Front Physiol. 2021;(12):640973. doi: 10.3389/fphys.2021.640973
  • Paneroni M, Simonelli C, Saleri M, et al. Muscle strength and physical performance in patients without previous disabilities recovering from COVID-19 pneumonia. Am J Phys Med Rehabil. 2021;100(2):105–109. EDN: RMAPLN doi: 10.1097/PHM.0000000000001641
  • Kim JW, Yoon JS, Kim EJ, et al. Prognostic implication of baseline sarcopenia for length of hospital stay and survival in patients with coronavirus disease 2019. J Gerontol A Biol Sci Med Sci. 2021;76(8):e110–e116. doi: 10.1093/gerona/glab085
  • Yang T, Li Z, Jiang L, et al. Risk factors for intensive care unitacquired weakness: A systematic review and meta-analysis. Acta Neurol Scand. 2018;138(2):104–114. doi: 10.1111/ane.12964
  • Mohammadi B, Schedel I, Graf K, et al. Role of endotoxin in the pathogenesis of critical illness polyneuropathy. J Neurol. 2008;255(2):265–272. doi: 10.1007/s00415-008-0722-0
  • Lacomis D, Giuliani MJ, van Cott A, Kramer DJ. Acute myopathy of intensive care: Clinical, electromyographic, and pathological aspects. Ann Neurol. 1996;40(4):645–654. doi: 10.1002/ana.410400415
  • Al-Lozi MT, Pestronk A, Yee WC, et al. Rapidly evolving myopathy with myosin-deficient muscle fibers. Ann Neurol. 1994;35(3):273–279. doi: 10.1002/ana.410350306
  • Bierbrauer J, Koch S, Olbricht C, et al. Early type II fiber atrophy in intensive care unit patients with nonexcitable muscle membrane. Crit Care Med. 2012;40(2):647–650. doi: 10.1097/CCM.0b013e31823295e6
  • Wollersheim T, Woehlecke J, Krebs M, et al. Dynamics of myosin degradation in intensive care unit-acquired weakness during severe critical illness. Intensive Care Med. 2014;40(4):528–538. doi: 10.1007/s00134-014-3224-9
  • Aschman T, Schneider J, Greuel S, et al. Association between SARS-CoV-2 infection and immune-mediated myopathy in patients who have died. JAMA Neurol. 2021;78(8):948–960. doi: 10.1001/jamaneurol.2021.2004
  • Stukalov A, Girault V, Grass V, et al. Multilevel proteomics reveals host perturbations by SARS-CoV-2 and SARS-CoV. Nature. 2021;594(7862):246–252. EDN: AJPQPV doi: 10.1038/s41586-021-03493-4
  • Shi Z, de Vries HJ, Vlaar AP, et al. Diaphragm pathology in critically ill patients with COVID-19 and postmortem findings from 3 medical centers. JAMA Intern Med. 2021;181(1):122–124. doi: 10.1001/jamainternmed.2020.6278
  • Walsh CJ, Batt J, Herridge MS, et al. Transcriptomic analysis reveals abnormal muscle repair and remodeling in survivors of critical illness with sustained weakness. Sci Rep. 2016;(6):29334. doi: 10.1038/srep29334
  • Yang T, Li Z, Jiang L, et al. Risk factors for intensive care unitacquired weakness: A systematic review and meta-analysis. Acta Neurol Scand. 2018;138(2):104–114. doi: 10.1111/ane.12964
  • Leung TW, Wong KS, Hui AC, et al. Myopathic changes associated with severe acute respiratory syndrome: A postmortem case series. Arch Neurol. 2005;62(7):1113–1117. doi: 10.1001/archneur.62.7.1113
  • Ramírez-Vélez R, Legarra-Gorgoñon G, Oscoz-Ochandorena S, et al. Reduced muscle strength in patients with long-COVID-19 syndrome is mediated by limb muscle mass. J Appl Physiol (1985). 2023;134(1):50–58. EDN: HYPAJI doi: 10.1152/japplphysiol.00599.2022
  • Rudroff T, Workman CD, Ponto LL. 18 F-FDG-PET imaging for post-COVID-19 brain and skeletal muscle alterations. Viruses. 2021;13(11):2283. doi: 10.3390/v13112283
  • Han Q, Zheng B, Daines L, Sheikh A. Long-term sequelae of COVID-19: A systematic review and meta-analysis of oneyear follow-up studies on post-COVID symptoms. Pathogens. 2022;11(2):269. EDN: BPFUTB doi: 10.3390/pathogens11020269
  • Medrinal C, Prieur G, Bonnevie T, et al. Muscle weakness, functional capacities and recovery for COVID-19 ICU survivors. BMC Anesthesiol. 2021;21(1):64. EDN: GCASJI doi: 10.1186/s12871-021-01274-0
  • Marusic U, Narici M, Simunic B, et al. Nonuniform loss of muscle strength and atrophy during bed rest: A systematic review. J Appl Physiol (1985). 2021;131(1):194–206. doi: 10.1152/japplphysiol.00363.2020
  • Tanriverdi A, Savci S, Kahraman BO, Ozpelit E. Extrapulmonary features of post-COVID-19 patients: Muscle function, physical activity, mood, and sleep quality. Ir J Med Sci. 2022;191(3): 969–975. EDN: IBYBRG doi: 10.1007/s11845-021-02667-3
  • Booth FW, Roberts CK, Laye MJ. Lack of exercise is a major cause of chronic diseases. Compr Physiol. 2012;2(2):1143–1211. EDN: NTJJCW doi: 10.1002/cphy.c110025
  • Hyatt H, Deminice R, Yoshihara T, Powers SK. Mitochondrial dysfunction induces muscle atrophy during prolonged inactivity: A review of the causes and effects. Arch Biochem Biophys. 2019;(662):49–60. EDN: YJWJYF doi: 10.1016/j.abb.2018.11.005
  • Bij de Vaate E, Gerrits KH, Goossens PH. Personalized recovery of severe COVID19: Rehabilitation from the perspective of patient needs. Eur J Clin Invest. 2020;50(7):e13325. doi: 10.1111/eci.13325
  • Valente AF, Jaspers RT, Wüst RC. Regular physical exercise mediates the immune response in atherosclerosis. Exerc Immunol Rev. 2021;27:42–53.
  • Atakan MM, Li Y, Kosar SN, et al. Evidence-based effects of high-intensity interval training on exercise capacity and health: A review with historical perspective. Int J Environ Res Public Health. 2021;18(13):7201. doi: 10.3390/ ijerph18137201
  • Белопасов В.В., Журавлева Е.Н., Нугманова Н.П., Абдрашитова А.Т. Постковидные неврологические синдромы // Клиническая практика. 2021. Т. 12, № 2. C. 69–82. [Belopasov VV, Zhuravleva EN, Nugmanova NP, Abdrashitova AT. Post-Covid-19 neurological syndromes. J Clin Pract. 2021;12(2): 69–82]. EDN: MZQWAN doi: 10.17816/clinpract71137
Еще
Статья обзорная