Предикторы активности и прогрессии рассеянного склероза (обзор)
Автор: Захаров А.В., Хивинцева Е.В., Повереннова И.Е., Баранова О.М.
Журнал: Саратовский научно-медицинский журнал @ssmj
Рубрика: Нервные болезни
Статья в выпуске: 1 т.17, 2021 года.
Бесплатный доступ
Современная терапия рассеянного склероза (PC) основывается на большом выборе препаратов, изменяющих его течение (ПИТРС), назначение которых производится с учетом среднесрочной и долгосрочной перспективы их эффективности. Существует проблема поиска предикторов эффективности терапии. Остается не полностью изученным вопрос определения факторов риска возникновения достоверного PC после первой атаки демиелинизации. Проведен анализ исследований, опубликованных за период 2006-2020 гг., доступных к изучению по данным основных научных баз (46 литературных источников). Магнитно-резонансная томография (МРТ) продемонстрировала хорошие результаты в отношении прогноза эффективности терапии ПИТРС интерферонового ряда и в качестве надежного критерия вероятности трансформации в достоверный рассеянный склероз после первой атаки демиелинизации. Мультимодальные вызванные потенциалы (ВП) позволяют оценить процессы дегенерации с большей чувствительностью, чем МРТ. На данный момент только МРТ является наиболее надежным способом оценки прогрессии заболевания и рисков его феноконверсии. Мультимо-дальные ВП и иммунологические маркеры более чувствительны к оценке дегенерации. Комплексное использование результатов данных методов дает возможность получить предикторы с большей чувствительностью и специфичностью для прогноза течения PC.
Рассеянный склероз, магнитно-резонансная томография, иммунология, вызванные потенциалы
Короткий адрес: https://sciup.org/149134991
IDR: 149134991
Список литературы Предикторы активности и прогрессии рассеянного склероза (обзор)
- Kuhle J, Disanto G, Dobson R, et al. Conversion from clinically isolated syndrome to multiple sclerosis: a large multicentre study. Mult Scler2015; 8: 1013-24.
- Ruet A, Arrambide G, Brochet B, et al. Early predictors of multiple sclerosis after a typical clinically isolated syndrome. Mult Scler2014;20: 1721-6.
- Sombekke MH, Wattjes MP, Balk LJ, et al. Spinal cord lesions in patients with clinically isolated syndrome: a powerful tool in diagnosis and prognosis. Neurology 2013; 80: 69-75.
- Filippi M, Rocca MA, Calabrese M, et al. Intracortical lesions: relevance for new MRI diagnostic criteria for multiple sclerosis. Neurology 2010; 75: 1988-94.
- Mitjana R, Tintore M, Rocca MA, et al. Diagnostic value of brain chronic black holes on T1-weighted MR images in clinically isolated syndromes. Mult Scler2014; 20: 1471-7.
- Uher T, Horakova D, Bergsland N, et al. MRI correlates of disability progression in patients with CIS over 48 months. Neuroimage Clin 2014; 6: 312-9.
- Longoni G, Rocca MA, Pagani E, et al. Deficits in memory and visuospatial learning correlate with regional hippocampal atrophy in MS. Brain Struct Funct 2015; 220: 435-44.
- Cawley N, Solanky BS, Muhlert N, et al. Reduced gamma-aminobutyric acid concentration is associated with physical disability in progressive multiple sclerosis. Brain 2015; 138:2584-95.
- Kearney H, Schneider T, Yiannakas MC, et al. Spinal cord grey matter abnormalities are associated with secondary progression and physical disability in multiple sclerosis. J Neurol Neurosurg Psychiatry 2015; 86: 608-14.
- Kearney H, Rocca MA, Valsasina P, et al. Magnetic resonance imaging correlates of physical disability in relapse onset multiple sclerosis of long disease duration. Mult Scler 2014;20:72-80.
- Samson RS, Cardoso MJ, Muhlert N, etal. Investigation of outer cortical magnetisation transfer ratio abnormalities in multiple sclerosis clinical subgroups. Mult Scler 2014; 20: 1322-30.
- Bisecco A, Rocca MA, Pagani E, et al. Connectivity-based parcellation of the thalamus in multiple sclerosis and its implications for cognitive impairment: a multicenter study. Hum Brain Mapp 2015; 36: 2809-25.
- Daams M, Steenwijk MD, Schoonheim MM, et al. Multi-parametric structural magnetic resonance imaging in relation to cognitive dysfunction in long-standing multiple sclerosis. Mult Scler J 2016; 22 (5): 608-19.
- Comi G, Martinelli V, Rodegher M, et al. Effect of glatiramer acetate on conversion to clinically definite multiple sclerosis in patients with clinically isolated syndrome (PreCISe study): a randomised, double-blind, placebocontrolled trial. Lancet 2009; 374: 1503-11.
- SignoriA, Schiavetti I, Gallo F, Sormani MP. Subgroups of multiple sclerosis patients with larger treatment benefits: a meta-analysis of randomized trials. Eur J Neurol 2015; 22: 960-6.
- Dobson R, Rudick RA, Turner B, et al. Assessing treatment response to interferon-G: Is there a role for MRI? Neurology 2014; 82: 248-54.
- Kallmann BA, Fackelmann S, Toyka KV, et al. Early abnormalities of evoked potentials and future disability in patients with multiple sclerosis. Mult Scler 2006; 12: 58-65.
- Narayanan D, Cheng H, Tang RA, Frishman LJ. Reproducibility of multifocal visual evoked potential and traditional visual evoked potential in normal and multiple sclerosis eyes. Doc Ophthalmol 2015; 130: 31 -41.
- Schlaeger R, D'Souza M, Schindler C, et al. Electrophysiological markers and predictors of the disease course in primary progressive multiple sclerosis. Mult Scler 2014; 20:51-6.
- Mori F, Kusayanagi H, Nicoletti CG, et al. Cortical plasticity predicts recovery from relapse in multiple sclerosis. Mult Scler 2014; 20: 451-7.
- Nagels G, D'hooghe MB, Vleugels L, et al. P300 and treatment effect of modafinil on fatigue in multiple sclerosis. J Clin Neurosci 2007; 14: 33-40.
- Hardmeier M, Leocani L, Fuhr P. A new role for evoked potentials in MS? Repurposing evoked potentials as biomarkers for clinical trials in MS. Mult Scler 2017; 23: 1309-19.
- Pelayo R, Montalban X, Minoves T, et al. Do multimodal evoked potentials add information to MRI in clinically isolated syndromes? Mult Scler 2010; 16: 55-61.
- Tintore M, Rovira A, Arrambide G, et al. Brainstem lesions in clinically isolated syndromes. Neurology 2010; 75: 1933-8.
- DiStadioA, Dipietro L, Ralli M, etal. The role ofvestibular evoked myogenic potentials in multiple sclerosis-related vertigo: A systematic review of the literature. Mult Scler Relat Disord 2019; 28: 159-64.
- Krbot Skoric M, Adamec I, Crnosija L, et al. Tongue somatosensory evoked potentials reflect midbrain involvement in patients with clinically isolated syndrome. Croat Med J 2016; 57: 558-65.
- Preziosa P, Rocca MA, Filippi M. Current state-of-art of the application of serum neurofilaments in multiple sclerosis diagnosis and monitoring. Expt Rev Neurother2020; 20: 747-69.
- Bornsen L, Khademi M, Olsson T, et al. Osteopontin concentrations are increased in cerebrospinal fluid during attacks of multiple sclerosis. Mult Scler 2011; 17 (1): 32-42.
- Sellebjerg F, Bornsen L, Khademi M, et al. Increased cerebrospinal fluid concentrations of the chemokine CXCL13 in active MS. Neurology 2009; 73 (23): 2003-10.
- Teunissen CE, Khalil M. Neurofilaments as biomarkers in multiple sclerosis. Mult Scler 2012; 18 (5): 552-6.
- Matute-Blanch C, Villar LM, Alvarez-Cermeno JC, et al. Neurofilament light chain and oligoclonal bands are prognostic biomarkers in radiologically isolated syndrome. Brain 2018; 141 (4): 1085-93.
- De Stefano N, Giorgio A, Tintore M, et al. Radiologically isolated syndrome or subclinical multiple sclerosis: MAGNIMS consensus recommendations. Mult Scler 2018; 24 (2): 214-21.
- Rocca MA, Battaglini M, Benedict RH, et al. Brain MRI atrophy quantification in MS: From methods to clinical application. Neurology 2017; 88 (4): 403-13.
- Salzer J, Svenningsson A, Sundstrom P. Neurofilament light as a prognostic marker in multiple sclerosis. Mult Scler 2010; 16(3): 287-92.
- Bhan A, Jacobsen C, Myhr KM, et al. Neurofilaments and 10-year follow-up in multiple sclerosis. Mult Scler 2018; 24 (10): 1301-7.
- Hakansson I, Tisell A, Cassel P, et al. Neurofilament levels, disease activity and brain volume during follow-up in multiple sclerosis. J Neuroinflam 2018; 15 (1): 209.
- Petzold A. The prognostic value of CSF neurofilaments in multiple sclerosis at 15-year follow-up. J Neurol Neurosurg Psychiatry 2015; 86 (12): 1388-90.
- Petzold A, Steenwijk MD, Eikelenboom JM, et al. Elevated CSF neurofilament proteins predict brain atrophy: a 15-year follow-up study. Mult Scler 2016; 22 (9): 1154-62.
- Kuhle J, Disanto G, Lorscheider J, et al. Fingolimod and CSF neurofilament light chain levels in relapsing-remitting multiple sclerosis. Neurology 2015; 84 (16): 1639-43.
- Lee CG, Da Silva CA, Dela Cruz CS, et al. Role of chitin and chitinase/chitinase-like proteins in inflammation, tissue remodeling, and injury. Annu Rev Physiol 2011; 73: 479-501.
- Borras E, Canto E, Choi M, et al. Protein-based classifier to predict conversion from clinically isolated syndrome to multiple sclerosis. Mol Cell Proteomics 2016; 15(1): 318-28.
- Novakova L,AxelssonM, KhademiM,etal. Cerebrospinal fluid biomarkers of inflammation and degeneration as measures of fingolimod efficacy in multiple sclerosis. Mult Scler 2017; 23 (1): 62-71.
- Burman J, Raininko R, Blennow K, et al. YKL-40 is a CSF biomarker of intrathecal inflammation in secondary progressive multiple sclerosis. J Neuroimmunol 2016; 292: 52-7.
- Mollgaard M, Degn M, Sellebjerg F, et al. Cerebrospinal fluid chitinase-3-like 2 and chitotriosidase are potential prognostic biomarkers in early multiple sclerosis. Eur J Neurol 2016; 23 (5): 898-905.
- Sotgiu S, Barone R, Arm G, et al. Intrathecal chitotriosidase and the outcome of multiple sclerosis. Mult Scler 2006; 12 (5): 551-7.
- Comabella M, Dominguez C, Rio J, et al. Plasma chitotriosidase activity in multiple sclerosis. Clin Immunol 2009; 131 (2): 216-22.