Прогнозная оценка доступности сбалансированного рациона питания для жителей регионов России: агент-ориентированный подход
Автор: Машкова Александра Леонидовна, Дукхи Натиша, Неволин Иван Викторович, Савина Ольга Александровна
Журнал: Экономические и социальные перемены: факты, тенденции, прогноз @volnc-esc
Рубрика: Региональная экономика
Статья в выпуске: 6 т.14, 2021 года.
Бесплатный доступ
На фоне пандемии коронавируса в России ухудшается финансовое состояние домохозяйств и их способность обеспечивать полноценный рацион питания, сбалансированный по содержанию нутриентов, витаминов и минералов. Целью работы является прогнозная оценка доступности сбалансированного рациона питания для домохозяйств в условиях реализации различных сценариев экономической и эпидемиологической ситуации. Применяемая методология исследования предполагает создание комплексной агент-ориентированной модели, отражающей протекание демографических и экономических процессов, которые определяют производство продуктов питания, доходы и здоровье населения. При оценке доступности сбалансированного рациона принимается в расчет численность и доход домохозяйств, доля дохода, отводимая на приобретение продуктов питания. Для информационного наполнения модели используются массивы данных, представленные на сайтах Росстата, министерств и ведомств, а также специально проведенного мониторинга цен на продукты. Разработаны сбалансированные рационы питания, обеспечивающие получение 75 и 90% ключевых витаминов и минералов при необходимой калорийности. Входящие в рационы продукты были оптимизированы по цене, на основе результатов мониторинга цен произведена оценка стоимости рационов и их доступности для населения в каждом регионе РФ по данным 2020 года. В доступности рационов в различных регионах наблюдается широкий размах: от 35% в Чеченской Республике до 95% в Москве, при среднем значении 83%. Сценарное моделирование доступности качественного питания для населения России проводилось на период до 2025 года. В оптимистическом сценарии наблюдается снижение доступности рационов до 81%, в консервативном и пессимистическом - постоянное падение уровня доступности витаминного рациона до 76 и 72% соответственно. Полученные результаты свидетельствуют о серьезной угрозе ухудшения качества питания жителей России, связанной как с падением доходов, так и с ростом цен на продукты питания. Также в рамках сценарных расчетов был определен объем субсидий малообеспеченным группам населения, необходимых для получения сбалансированного рациона.
Уровень жизни, доступность продуктов питания, сбалансированный рацион, агент-ориентированное моделирование, вычислительный эксперимент, мониторинг цен
Короткий адрес: https://sciup.org/147236362
IDR: 147236362 | DOI: 10.15838/esc.2021.6.78.6
Список литературы Прогнозная оценка доступности сбалансированного рациона питания для жителей регионов России: агент-ориентированный подход
- Редчикова Н., Семенова А. Экономическая доступность продовольствия в Российской Федерации // Вестник Томского государственного университета. Экономика. 2015. № 4 (32). С. 71—87.
- Водясов П.В., Миненко А.В. Оценка экономических факторов спроса на продовольственном рынке // Экономика: вчера, сегодня, завтра. 2018. Т. 8. № 2А. С. 26—32.
- Яшкова Н.В. Методика оценки физической доступности продовольствия // Фундаментальные исследования. 2020. № 8. С. 92—96. URL: http://firndamental-research.m/m/article/view?id=42833 (дата обращения 07.07.2021).
- Бородин К.Г. Экономическая доступность продовольствия: факторы и методы оценки // Экономический журнал ВШЭ. 2018. Т. 22. № 4. С. 563-582.
- Akerlof G.A. Behavioral macroeconomics and macroeconomic behavior. American Economic Review, 2002, vol. 92, pp. 411-433. DOI: 10.1257/00028280260136192
- Fagiolo G., Roventini A. Macroeconomic policy in DSGE and agent-based models redux: New developments and challenges ahead. Journal of Artificial Societies and Social Simulation, 2017, vol. 20(1). URL: http://jasss. soc.surrey.ac.uk/20/1/1.html. DOI: 10.18564/jasss.3280
- Tesfatsion L., Judd, K. (Eds.) Handbook of Computational Economics, vol.2: Agent-Based Computational Economics. Amsterdam, North Holland, 2006. 904 p.
- Haber G. Monetary and fiscal policies analysis with an agent-based macroeconomic model. Journal of Economics and Statistics, 2008, vol. 228, pp. 276-295. DOI: 10.1515/jbnst-2008-2-308
- Bassi F., Lang D. Investment hysteresis and potential output: A post-Keynesian-Kaleckian agent-based approach. Economic Modelling, 2016, vol. 52, pp. 35-49. DOI: 10.1016/j.econmod.2015.06.022
- Napoletano M., Dosi G., Fagiolo G., Roventini A. Wage formation, investment behavior and growth regimes: An agent-based analysis. Revue de l'OFCE, 2012, vol. 124, pp. 235-261 DOI: 10.3917/reof.124.0235.
- Branch W.A., Evans G.W. Monetary policy and heterogeneous expectations. Economic Theory, 2011, vol. 47, pp. 365-393, DOI: 10.1007/s00199-010-0539-9
- Delli Gatti D., Desiderio S. Monetary policy experiments in an agent-based model with financial frictions. Journal of Economic Interaction and Coordination, 2015, vol. 10(2), pp. 265-286, DOI: 10.1007/s11403-014-0123-7
- Alexandre M., Lima G.T. Combining monetary policy and prudential regulation: an agent-based modeling approach. JEcon Interact Coord, 2020, vol. 15, pp. 385-411, DOI: 10.1007/s11403-017-0209-0
- Popoyan L., Napoletano M. Roventini A. Taming macroeconomic instability: Monetary and macro prudential policy interactions in an agent-based model. Journal of Economic Behavior & Organization, 2017, vol. 134 (February), pp.117-140. DOI: 10.1016/j.jebo.2016.12.017
- Blanchard O., Gali, J. Labor markets and monetary policy: A new Keynesian model with unemployment. American Economic Journal: Macroeconomics, 2010, vol. 2, pp. 1-30. DOI: 10.2139/ssrn.920959
- Dawid H., Gemkow S., Harting P., Neugart M. Labor market integration policies and the convergence of regions: The role of skills and technology diffusion. Journal of Evolutionary Economics, 2012, vol. 22, pp. 543562. DOI: 10.1007/s00191-011-0245-1
- Riccetti L., Russo A., Gallegati M. Unemployment benefits and financial leverage in an agent based macroeconomic model. Economics: The Open-Access, Open-AssessmentE-Journal, 2013b, vol. 7, no. 2013-42. DOI: 10.5018/economics-ejournal.ja.2013-42
- Anufriev M., Assenza T., Hommes C., Massaro D. Interest rate rules and macroeconomic stability under heterogeneous expectations. Macroeconomic Dynamics, 2013, vol. 17(08), pp. 1574-1604. DOI: 10.2139/ ssrn.1400748
- Battiston S., Delli Gatti D., Gallegati M., Greenwald B., Stiglitz J. Liaisons dangereuses: Increasing connectivity, risk sharing, and systemic risk. Journal of Economic Dynamics & Control, 2012, vol. 36 (8), pp. 1121-1141. DOI: 10.1016/j.jedc.2012.04.001
- Russo A., Riccetti L., Gallegati M. Increasing inequality, consumer credit and financial fragility in an agent based macroeconomic model. Journal of Evolutionary Economics, 2016, vol. 26, pp. 25-47. DOI: 10.2139/ ssrn.2356249
- Raberto M., Teglio A., Cincotti S. Integrating real and financial markets in an agent-based economic model: An application to monetary policy design. Computational Economics, 2008, vol. 32 (1), pp. 147-162. DOI: 10.1007/s10614-008-9138-2,
- Gerst M., Wang P., Roventini A., Fagiolo G., Dosi G., Howarth R., Borsuk M. Agent-based modeling of climate policy: An introduction to the engage multi-level model framework. Environmental Modelling & Software, 2013, vol. 44, pp. 62-75. DOI: 10.1016/j.envsoft.2012.09.002
- Ge J., Polhill J., Macdiarmid J., Fitton N., Smith P., Clark H., Dawson T., Aphale M. Food and nutrition security under global trade: A relation-driven agent-based global trade model. Royal Society Open Science, 2021, vol. 8, no. 201587. DOI: https://doi.org/10.1098/rsos.201587
- Dobbie S., Schreckenberg K., Dyke J., Schaafsma M., Balbi S. Agent-based modelling to assess community food security and sustainable livelihoods. Journal of Artificial Societies and Social Simulation, 2018, vol. 21 (1), no. 9. DOI: 10.18564/jasss.3639
- Buurma J., Hennen W, Verwaart T. How social unrest started innovations in a food supply chain. Journal of Artificial Societies and Social Simulation, 2017, vol. 20 (1), no. 8. DOI: 10.18564/jasss.3350
- McPhee-Knowles S. Growing food safety from the bottom up: An agent-based model of food safety inspections. Journal of Artificial Societies and Social Simulation, 2015, vol. 18 (2), no. 9. DOI: 10.18564/jasss.2717
- Mashkova A.L., Novikova E.V., Savina O.A., Mamatov A.V., Mashkov E.A. Simulating budget system in the agent model of the Russian Federation spatial development. In: Chugunov A., Khodachek I., Misnikov Y., Trutnev D. (Eds.). Electronic Governance and Open Society: Challenges in Eurasia. EGOSE 2019. 2020, Communications in Computer and Information Science. Vol. 1135. Pp. 17-31. DOI: 10.1007/978-3-030-39296-3_2
- Mashkova A.L., Novikova E.V., Savina O.A., Mashkov E.A. Generating synthetic population for the agent-based model of the Russian Federation spatial development. In: Ahrweiler P., Neumann M. (Eds.). Advances in Social Simulation. ESSA 2019. Springer Proceedings in Complexity. Springer, Cham. 2021. Pp. 183-187. DOI: 10.1007/978-3-030-61503-1_17
- Гончарук И.В. Обзор исследований о влиянии пандемии COVID-19 на развитие мировой и российской электронной торговли // Таможенная политика России на Дальнем Востоке. 2021. № 1 (94). С. 66-82. DOI: 10.24866/1815-0683/2021-1/66-82
- Alfonso V., Boar C., Frost J., Gambacorta L., Liu J. E-commerce in the pandemic and beyond. BIS Bulletin, 2021, vol. 36, pp. 1-7. Available at: https://www.bis.org/publ/bisbull36.htm