Prospects for the use of neural networks in cardiometry

Автор: Kamyshev Konstantin V., Kureichik Viktor M., Borodyanskiy Ilya M., Bersenev Evgenie Y.

Журнал: Cardiometry @cardiometry

Рубрика: Review

Статья в выпуске: 17, 2020 года.

Бесплатный доступ

This paper provides an overview of the use of neural network technology in cardiology, primarily in diagnostics using ECG. The aim of this work is to substantiate the use of artificial neural network technology in cardiometry, as a field of science that is closely related to cardiology, but differs from it in the wider use of natural science approaches. The definition of machine learning is given, and the concept of artificial neural networks as one of the methods of machine learning is defined. The mechanism of electrocardiogram recording is described and methods of its analysis are considered. The types of neural networks used for electrocardiograms processing are revealed. The prospects of using the neural network method for processing the data obtained during cardiometric studies are determined.

Еще

Artificial neural network, ecg, cardiometry

Короткий адрес: https://sciup.org/148311481

IDR: 148311481   |   DOI: 10.12710/cardiometry.2020.17.8591

Список литературы Prospects for the use of neural networks in cardiometry

  • Neural network. Bolshaya Rossiyskaya enciklopedi¬ya : [in 35 volumes] / ed. by Yu. S. Osipov. M.: Bolsha¬ya Rossiyskaya enciklopediya, 2004-2017. [in Russian]
  • McCulloch WS, Pitts V. Logical calculus of ideas re¬lated to neural activity. Archived copy November 27, 2007 on Wayback Machine / Automata / edited by K. E. Shannon and J. McCarthy, Moscow: Foreign Litera¬ture Publishing house, 1956, Pp. 363-384. [in Russian]
  • Nikolenko S, Kadurin A, Arkhangelskaya E. Deep learning. St. Petersburg: Piter, 2018. 480 p. ISBN 978-5-496-02536-2. [in Russian]
  • Herkenhoff L, Fogli J. Applied statistics for business and management using Microsoft Excel. New York: Springer, 2013. doi: 10.1007/978-1-4614-8423-3.
  • Weiß CH, Tulsa OK. STATISTICA, Version 8. Ad¬vances in Statistical Analysis. 2007; 91(3):339–41. doi: 10.1007/s10182-007-0038-x.
  • Grapov D, Fahrmann J, Wanichthanarak K, Khoom¬rung S. Rise of deep learning for genomic, proteomic, and metabolomic data integration in precision medi¬cine. OMICS: A Journal of Integrative Biology. 2018; 22(10):630–6. doi: 10.1089/omi.2018.0097.
  • Han SH, Kim KW, Kim S, Youn YC. Artificial neu¬ral network: understanding the basic concepts with¬out mathematics. Dement Neurocognitive Disord. 2018;17(3):83–9. doi: 10.12779/dnd.2018.17.3.83.
  • Zharikov OG, Kovalev VA, Litvin AA. Modern pos¬sibilities of using some expert systems in medicine. Doctor and information technology. 2008;5:24-30. [in Russian]
  • Goodfellow I, Bengio Y, Courville A. Deep Learn¬ing. Cambridge: MIT Press, 2016. 800 p.
  • Caliskan A, Yuksel ME. Classification of coronary artery disease data sets by using a deep neural net-work. The EuroBiotech Journal. 1(4):271-7.
  • Yasnitsky LN. Intellectual systems. Moscow: Labo¬ratory of knowledge. 2016, 221 p. [in Russian]
  • Vyucheisky MV, Krainov IN, Gribanov AV. Neural network technology in the diagnosis of diseases. DOI: 10.17238/issn2542-1298.2018.6.3.284. [in Russian]
  • Choi E, Schuetz A, Stewart WF, Sun J. Using re¬current neural network models for early detection of heart failure onset. J. Am. Med. Inform. Assoc. 2017;24(2):361–70. doi: 10.1093/jamia/ocw112
  • Tsai PF, et al. Length of hospital stay prediction at the admission stage for cardiology patients using artificial neural network. J. Healthc. Eng. 2016. doi: 10.1155/2016/7035463.
  • Nanayakkara S, et al. Characterising risk of in-hos¬pital mortality following cardiac arrest using ma¬chine learning: A retrospective international registry study. PLoS Med. 2018;15(11). doi: 10.1371/journal.pmed.1002709
  • Onishchenko PS, Klyshnikov KYu. Mathematical biology and bioinformatics 2020;15(1):40-56. Artificial neural networks in cardiology: analysis of numerical and textual data. doi: 10.17537/2020.15.40. [in Russian]
  • Zahra Ebrahimi, et al. A review on deep learning methods for ECG arrhythmia classification. Expert Systems with Applications: 2020;X7:100033.
  • Jambukia S, Dabhi V, Prajapati H. (2015). Classi¬fication of ECG signals using machine learning tech-niques: A survey. doi:10.1109/ICACEA.2015.7164783.
  • Kalyakulina AI, et al. Finding morphology points of electrocardiographic-signal waves using wavelet analy¬sis. Radiophysics and Quantum Electronics. 2019;61(8–9):689–703. doi: 10.1007/s11141-019-09929-2.
  • Sannino G, De Pietro G. A deep learning approach for ECG-based heartbeat classification for arrhyth-mia detection. Future Generation Computer Systems. 2018;86:446–55. doi: 10.1016/j.future.2018.03.057.
  • Goldberger AL, et al. Physiobank, physiotool¬kit, and physionet. Circulation. 2000;101(23). doi: 10.1161/01.cir.101.23.e215.
  • Moody G.B., Mark R.G. The impact of the MIT-BIH arrhythmia database. IEEE Engineering in Med¬icine and Biology Magazine. 2001;20(3):45–50. doi: 10.1109/51.932724.
  • Rudenko MY, et al. Theoretical principles of cardi¬ometry. Cardiometry. November 2012;1:7-23.
  • Kamyshev KV, Kureichik VM, Borodyanskiy IM. Review of the recommender systems application in cardiology. Cardiometry. May 2020;16:97-105.
  • Kamyshev KV, Borodyanskiy IM. Application of recommender systems in medicine: problems and solutions. “Intelligent systems and information tech¬nologies 2020” (IS&IT)’20. Conference Proceedings. September, 2-8, 2020, Divnomorsk, Russia. Taganrog: Publishing house of Stupin S. A., 2020. 475 p. ISBN 978-5-6045119-0-9
Еще
Статья обзорная