Радиомика и радиогеномика глиобластомы: теоретические основы и возможности клинического применения. Обзор литературы
Автор: Никульшина Я.О., Редькин А.Н., Колпаков А.В.
Журнал: Вестник Российского научного центра рентгенорадиологии Минздрава России @vestnik-rncrr
Рубрика: Обзоры, лекции
Статья в выпуске: 3 т.22, 2022 года.
Бесплатный доступ
Глиобластома - нейроэпителиальная злокачественная опухоль головного мозга преимущественно астроцитарного происхождения с агрессивным течением и неблагоприятным прогнозом. Наиболее частыми симптомами являются головная боль, судороги,неврологический дефицит, когнитивные и личностные нарушения. На МРТ глиобластомы проявляются в виде образования с нечетким контурами, неоднородной структуры, с зонами неравномерного накопления контрастного вещества, окружающими гипоинтенсивный некротический центр опухоли. Медиана общей выживаемости составляет 15 месяцев после комплексного лечения, что диктует необходимость разработки персонализированного подхода в диагностике и лечении глиобластом. Основной принцип радиомики предполагает извлечение большого числа количественных признаков из медицинских изображений с использованием компьютерных алгоритмов; радиогеномика является инструментом для оценки подтипа опухоли, мутационного статуса и внутриопухолевой гетерогенности, отражающей связь с прогрессированием, выживаемостью и ответом на лечение. Использование радиомики и радиогеномики при глиобластомах создает потенциал для прогнозирования выживаемости, дифференциальной диагностики глиом и других опухолей, определение степени дифференцировки Grade, выявления мутаций и амплификаций, дифференциальной диагностики псевдопрогрессии и опухолевой прогрессии, прогнозирования ответа на химиолучевое лечение.
Глиобластома, радиомический анализ, радиогеномика, магнитно-резонансная томография, химиолучевое лечение
Короткий адрес: https://sciup.org/149142250
IDR: 149142250
Список литературы Радиомика и радиогеномика глиобластомы: теоретические основы и возможности клинического применения. Обзор литературы
- Голанов А.В. (ред.). Стереотаксическое облучение патологии ЦНС на аппарате КиберНож. Москва: Издательство ИП «Т.А. Алексеева». 2017. 576 с.
- Яковленко Ю.Г. Глиобластомы: современное состояние проблемы. Медицинский вестник Юга России. 2019. № 4. URL: https://cyberleninka.ru/article/n/glioblastomy-sovremennoe-sostoyanie-problemy (дата обращения: 22.04.2022).
- Omuro A., DeAngelis L.M. Glioblastoma and other malignant gliomas: a clinical review. JAMA. 2013. V. 310. No. 17. P.1842-1850. DOI: 10.1001/jama.2013.280319.
- Ostrom Q.T., Gittleman H., Truitt G., et al. CBTRUS Statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2011-2015. Neuro Oncol. 2018. V. 20 (Suppl. 4). P. iv1-iv86. DOI: 10.1093/neuonc/noy131.
- Oronsky B., Reid T.R., Oronsky A., et al. A Review of Newly Diagnosed Glioblastoma. Front Oncol. 2021. V. 10. Article ID 574012. DOI: 10.3389/fonc.2020.574012.
- Mazurowski M.A., Clark K., Czarnek N.M., et al. Radiogenomics of lower-grade glioma: algorithmically-assessed tumor shape is associated with tumor genomic subtypes and patient outcomes in a multiinstitutional study with The Cancer Genome Atlas data. J Neurooncol. 2017. V. 133. No. 1. P. 27-35. DOI: 10.1007/s11060-017-2420-1.
- Taha B., Boley D., Sun J., et al. State of radiomics in Glioblastoma. Neurosurgery. 2021. V. 89. No. 2. P 177-184. DOI: 10.1093/neuros/nyab124.
- Золотова С.В., Хохлова Е.В., Беляшова А.С. и др. Исследование метаболических особенностей первичных глиобластом методом ОФЭКТ-КТ с Tc-МИБИ с оценкой их влияния на прогноз заболевания. Вопросы нейрохирургии им. Н.Н. Бурденко. 2019. № 83. С. 17-26. DOI: 10.17116/neiro20198302117.
- Shenouda G., Souhami L., Petrecca K. et al. A phase 2 trial of neoadjuvant temozolomide followed by hypofractionated accelerated radiation therapy with concurrent and adjuvant temozolomide for patients with glioblastoma. Int J Radiat Oncol Biol Phys. 2017. V. 97. No. 3. P. 487-494. DOI: 10.1016/j .ijrobp.2016.11.006.
- Xi Y.B., Guo F., Xu Z.L., et al. Radiomics signature: a potential biomarker for the prediction of MGMT promoter methylation in glioblastoma. J Magn Reson Imaging. 2018. V. 47. No. 5. P. 1380-1387. DOI: 10.1002/jmri.25860.
- Zhang X., Tian Q., Wang L., et al. Radiomics strategy for molecular subtype stratification of lowergrade glioma: detecting IDH and TP53 mutations based on multimodal MRI. J Magn Reson Imaging. 2018. V. 48. No. 4. P. 916-926. DOI: 10.1002/jmri.25960.
- Oh S., Yeom J., Cho H.J., et al. Integrated pharmaco-proteogenomics defines two subgroups in isocitrate dehydrogenase wild-type glioblastoma with prognostic and therapeutic opportunities. Nat Commun. 2020. V. 11. Article ID 3288. DOI: 10.1038/s41467-020-17139-y.
- Louis D.N., Perry A., Reifenberger G., et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathologica. 2016. V. 131. No. 6. P. 803-820. DOI: 10.1007/s00401-016-1545-1.
- Georgescu M.M., Olar A. Genetic and histologic spatiotemporal evolution of recurrent, multifocal, multicentric and metastatic glioblastoma. Acta Neuropathol Commun. 2020. V. 8. Article ID 10. DOI: 10.1186/s40478-020-0889-x.
- Armocida D., Pesce A., Di Giammarco F., et al. Long term survival in patients suffering from glioblastoma multiforme: a single-center observational cohort study. Diagnostics. 2019. V. 9. No. 4. Article ID 209. DOI: 10.3390/diagnostics9040209.
- Moradmand H., Aghamiri S.M.R., Ghaderi R. Impact of image preprocessing methods on reproducibility of radiomic features in multimodal magnetic resonance imaging in glioblastoma. J Appl Clin Med Phys. 2020. V. 21. No. 1. P. 179-190. DOI: 10.1002/acm2.12795.
- Goncalves F.G., Chawla S., Mohan S. Emerging MRI Techniques to Redefine Treatment Response in Patients with Glioblastoma. J Magn Reson Imaging. 2020. V. 52. No. 4. P. 978-997. DOI: 10.1002/jmri.27105.
- Beig N., Bera K., Prasanna P., et al. Radiogenomic-Based survival risk stratification of tumor habitat on Gd-T1w MRI is associated with biological processes in glioblastoma. Clin Cancer Res. 2020. V. 26. No. 8. P. 1866-1876. DOI: 10.1158/1078-0432.CCR-19-2556.
- Leger S., Zwanenburg A., Pilz K., et al. A comparative study of machine learning methods for timeto-event survival data for radiomics risk modelling. Sci Rep. 2017. V. 7. No. 1. Article ID 13206. DOI: 10.1038/s41598-017-13448-3.
- Bisdas S., Shen H., Thust S., et al. Texture analysis and support vector machine-assisted diffusional kurtosis imaging may allow in vivo gliomas grading and IDH-mutation status prediction: a preliminary study. Sci Rep. 2018. V. 8. No. 1. Article ID 6108. DOI: 10.1038/s41598-018-24438-4.
- Lotan E., Jain R., Razavian N., et al. State of the Art: Machine Learning Applications in Glioma Imaging. Am J Roentgenol. 2019. V. 212. No. 1. P. 26-37. DOI: 10.2214/AJR.18.20218.
- Lohmann P., Galldiks N., Kocher M., et al. Radiomics in neuro-oncology: Basics, workflow, and applications. Methods. 2021. V. 188. P. 112-121. DOI: 10.1016/j.ymeth.2020.06.003.
- Tomaszewski M.R., Gillies R.J. The biological meaning of radiomic features. Radiology. 2021. Article ID 299. No. 2. Article ID E256. DOI: 10.1148/radiol.2021202553.
- Khanna O., Kazerooni A.F., Farrell C.J., et al. Machine Learning Using Multiparametric Magnetic Resonance Imaging Radiomic Feature Analysis to Predict Ki-67 in World Health Organization Grade I Meningiomas. Neurosurgery. 2021. V. 89. No. 5. P. 928-936. DOI: 10.1093/neuros/nyab307.
- Fathi Kazerooni A., Bakas S., Saligheh Rad H., et al. Imaging signatures of glioblastoma molecular characteristics: A radiogenomics review. J. Magn Reson. Imaging. 2020. V. 52. No. 1. P. 54-69. DOI: 10.1002/jmri.26907.
- Zhou H., Vallieres M., Bai H.X., et al. MRI features predict survival and molecular markers in diffuse lower-grade gliomas. Neuro Oncol. 2017. V. 19. No. 6. P. 862-870. DOI: 10.1093/neuonc/now256.
- Davatzikos C., Barnholtz-Sloan J.S., Bakas S., et al. AI-based prognostic imaging biomarkers for precision neuro-oncology: The ReSPOND consortium. Neuro Oncol. 2020. V. 22. No. 6. P. 886888. DOI: 10.1093/neuonc/noaa045.
- Mansouri A., Hachem L.D., Mansouri S., et al. MGMT promoter methylation status testing to guide therapy for glioblastoma: Refining the approach based on emerging evidence and current challenges. Neuro Oncol. 2019. V. 21. No. 2. P. 167-178. DOI: 10.1093/neuonc/noy132.
- Akbari H., Bakas S., Pisapia J.M., et al. In vivo evaluation of EGFRvIII mutation in primary glioblastoma patients via complex multiparametric MRI signature. Neuro Oncol. 2018. V. 20. No. 8. P. 1068-1079. DOI: 10.1093/neuonc/noy033.
- Boxerman J.L., Quarles C.C., Hu L.S., et al. Consensus Recommendations for a Dynamic Susceptibility Contrast MRI Protocol for Use in High-Grade Gliomas. Neuro Oncol. 2020. V. 22. No. 9. P. 1262-1275. DOI: 10.1093/neuonc/noaa141.
- Park Y.W., Han K., Ahn S.S., et al. Prediction of IDH1-mutation and 1p/19q-codeletion status using preoperative MR imaging phenotypes in lower grade gliomas. Am J. Neuroradiol. 2018. V. 39. No.1. P. 37-42. DOI: 10.3174/ajnr.A5421.
- Haider A.S., van den Bent M., Wen P.Y., et al. Toward a standard pathological and molecular characterization of recurrent glioma in adults: A Response Assessment in Neuro-Oncology effort. Neuro Oncol. 2020. V. 22. No.4. P. 450-456. DOI: 10.1093/neuonc/noz233.
- Bakas S., Akbari H., Pisapia J., et al. In vivo detection of EGFRvIII in glioblastoma via perfusion magnetic resonance imaging signature consistent with deep peritumoral infiltration. Clin. Cancer Res. 2017. V. 23. No. 16. P. 4724-4734. DOI: 10.1158/1078-0432.CCR-16-1871.
- Singh G., Manjila S., Sakla N., et al. Radiomics and radiogenomics in gliomas: A contemporary update. Br. J. Cancer. 2021. V. 125. No. 5. P. 641-657. DOI: 10.1038/s41416-021-01387-w.
- Bae S., Choi Y.S., Ahn S.S., et al. Radiomic MRI Phenotyping of Glioblastoma: Improving Survival Prediction. Radiology. 2018. V. 289. No. 3. P. 797-806. DOI: 10.1148/radiol.2018180200.
- van Griethuysen J.M., Fedorov A., Parmar C., et al. Computational radiomics system to decode the radiographic phenotype. Cancer Res. 2017. V. 77. No. 21. P. e104-e107. DOI: 10.1158/0008-5472.CAN-17-0339.
- Kickingereder P., Neuberger U., Bonekamp D., et al. Radiomic subtyping improves disease stratification beyond key molecular, clinical, and standard imaging characteristics in patients with glioblastoma. Neuro Oncol. 2018. V. 20. No. 6. P. 848-857. DOI: 10.1093/neuonc/nox188.
- Aftab K., Aamir F.B., Mallick S., et al. Radiomics for precision medicine in glioblastoma. 2022. J Neurooncolog. V. 156. No. 2. P. 217-231. DOI: 10.1007/s11060-021-03933-1.
- Rathore S., Akbari H., Rozycki M., et al. Radiomic MRI signature reveals three distinct subtypes of glioblastoma with different clinical and molecular characteristics, offering prognostic value beyond IDH1. Sci Rep. 2018. V. 8. No. 1. Article ID 5087. DOI: 10.1038/s41598-018-22739-2.
- Zhao J., Wang Y-L., Li X-B., et al. Comparative analysis of the diffusion kurtosis imaging and diffusion tensor imaging in grading gliomas, predicting tumour cell proliferation and IDH-1 gene mutation status. J Neurooncol. 2019. V. 141. No. 1. P. 195-203. DOI: 10.1007/s11060-018-03025-7.
- Zhao J., Huang Y., Song Y., et al. Diagnostic accuracy and potential covariates for machine learning to identify IDH mutations in glioma patients: evidence from a meta-analysis. Eur Radiol. 2020. V. 30. No. 8. P. 4664-4674. DOI: 10.1007/s00330-020-06717-9.
- Li L., Mu W., Wang Y., et al. A non-invasive radiomic method using 18F-FDG PET predicts isocitrate dehydrogenase genotype and prognosis in patients with glioma. Front Oncol. 2019. V. 9. Article ID 1183. DOI: 10.3389/fonc.2019.01183.
- Choi Y.S., Bae S., Chang J.H., et al. Fully automated hybrid approach to predict the IDH mutation status of gliomas via deep learning and radiomics. Neuro Oncol. 2021. V. 23. No. 2. P. 304-313. DOI: 10.1093/neuonc/noaa177.
- Bangalore Yogananda C.G., Shah B.R., Vejdani-Jahromi M., et al. A novel fully automated MRI-based deep-learning method for classification of IDH mutation status in brain gliomas. Neuro Oncol. 2020. V. 22. No. 3. P. 402-411. DOI: 10.1093/neuonc/noz199.
- Nie E., Miao F., Jin X., et al. Fstl1/DIP2A/MGMT signaling pathway plays important roles in temozolomide resistance in glioblastoma. Oncogene. 2019. V. 38. No. 15. P. 2706-2721. DOI: 10.1038/s41388-018-0596-2.
- Diehn M., Nardini C., Wang D.S., et al. Identification of noninvasive imaging surrogates for brain tumor gene-expression modules. Proc Natl Acad Sci USA. 2008. V. 105. No. 13. P. 5213-5218. DOI: 10.1073/pnas.0801279105.
- Guo G., Sun Y., Hong R., et al. IKBKE enhances TMZchemoresistance through up regulations of MGMT expression in glioblastoma. Clin Trans Oncol. 2019. V. 22. No. 8. P 1252-1262. DOI: 10.1007/s 12094-019-02251 -3.
- Kirstein A., Schmid T.E., Combs S.E. et al. The Role of miRNA for the Treatment of MGMT Unmethylated Glioblastoma Multiforme. Cancers (Basel). 2020. V. 12. No. 5. Article ID 1099. DOI: 10.3390/cancers12051099.
- Pope W.B., Young J.R., Ellingson B.M. Advances in MRI assessment of gliomas and response to anti-VEGF therapy. Curr Neurol Neurosci Rep. 2011. V. 11. No. 3. P. 336-344. DOI: 10.1007/s11910-011-0179-x.
- Bae S., Choi Y.S., Ahn S.S., et al. Radiomic MRI phenotyping of glioblastoma: Improving survival prediction. Radiology. 2018. V. 289. No. 3. P. 797-806. DOI: 10.1148/radiol.2018180200.
- Bakas S., Shukla G., Akbari H., et al. Overall survival prediction in glioblastoma patients using structural magnetic resonance imaging (MRI): Advanced radiomic features may compensate for lack of advanced MRI modalities. J Med Imaging. 2020. V. 7. No. 3. Article ID 031505. DOI: 10.1117/1.JMI.7.3.031505.
- Coates J.T.T., Pirovano G., El Naqa. I. Radiomic and radiogenomic modeling for radiotherapy: Strategies, pitfalls, and challenges. J Med Imaging. 2021. P. 8. No. 3. Article ID 031902. DOI: 10.1117/1.JMI.8.3.031902.
- Rathore S., Mohan S, Bakas S., et al. Multi-institutional noninvasive in vivo characterization of IDH, 1p/19q, and EGFRvIII in glioma using neuro-Cancer Imaging Phenomics Toolkit (neuro-CaPTk). Neurooncol. Adv. 2020. V. 2 (Suppl. 4). P. iv22-iv34. DOI: 10.1093/noajnl/vdaa128.
- Rathore S., Akbari H., Doshi J., et al. Radiomic signature of infiltration in peritumoral edema predicts subsequent recurrence in glioblastoma: implications for personalized radiotherapy planning. J Med Imaging. 2018. P. 5. No. 2. Article ID 219. DOI: 10.1117/1.JMI.5.2.021219.
- Pan Z.-Q., Zhang S.-J., Wang X.-L., et al. Machine Learning Based on a Multiparametric and Multiregional Radiomics Signature Predicts Radiotherapeutic Response in Patients with Glioblastoma. Behav Neurol. 2020. V. 2020. Article ID 1712604. DOI: 10.1155/2020/1712604.
- Massey S.C., White H., Whitmire P., et al. Image-based metric of invasiveness predicts response to adjuvant temozolomide for primary glioblastoma. PLOS One. 2020. V. 15. No. 3. Article ID e0230492. DOI: 10.1371/journal.pone.0230492.
- Stupp R., Taillibert S., Kanner A., et al. Effect of Tumor-Treating Fields Plus Maintenance Temozolomide vs Maintenance Temozolomide Alone on Survival in Patients with Glioblastoma: A Randomized Clinical Trial. JAMA. 2017. V. 318. No. 23. P. 2306-2316. DOI: 10.1001/jama.2017.18718.
- Bhandari M., Gandhi A.K., Devnani B., et al. Comparative Study of Adjuvant Temozolomide Six Cycles Versus Extended 12 Cycles in Newly Diagnosed Glioblastoma Multiforme. J Clin Diagn Res. 2017. V. 11. No. 5. P. XC04-XC08. DOI: 10.7860/JCDR/2017/27611.9945.
- Skardelly M., Dangel E., Gohde J., et al. Prolonged Temozolomide Maintenance Therapy in Newly Diagnosed Glioblastoma. Oncologist. 2017. V. 22. No. 5. P. 570-575. DOI: 10.1634/theoncologist.2016-0347.
- Zanfardino M., Franzese M., Pane K., et. al. Bringing radiomics into a multi-omics framework for a comprehensive genotype-phenotype characterization of oncological diseases. J Transl Med. 2019. V. 17. No. 1. Article ID 337. DOI: 10.1186/s12967-019-2073-2.
- Kim H.S., Kim S.C., Kim S.J., et al. Identification of a radiosensitivity signature using integrative metaanalysis of published microarray data for NCI-60 cancer cells. BMC Genomics. 2012. V. 13. Article ID 348. DOI: 10.1186/1471-2164-13-348.
- Grossmann P., Gutman D.A., Dunn Jr. W.D., et al. Imaging-genomics reveals driving pathways of MRI derived volumetric tumor phenotype features in glioblastoma. BMC Cancer. 2016. V. 16. Article ID 611. DOI: 10.1186/s12885-016-2659-5.
- Akbari H., Rathore S., Bakas S., et al. Histopathology-validated machine learning radiographic biomarker for noninvasive discrimination between true progression and pseudo-progression in glioblastoma. Cancer. 2020. V. 126. No. 11. P. 2625-2636. DOI: 10.1002/cncr.32790.
- Strauss S.B., Meng A., Ebani E.J., et al. Imaging glioblastoma posttreatment: Progression, pseudoprogression, pseudoresponse, radiation necrosis. Neuroimaging Clin N Am. 2021. V. 31. No. 1. P. 103-120. DOI: 10.1016/j.nic.2020.09.010.