Регенеративная реабилитация повреждений скелетных мышц

Автор: Щербак Сергей Григорьевич, Макаренко Станислав Вячеславович, Камилова Татьяна Аскаровна, Голота Александр Сергеевич, Сарана Андрей Михайлович

Журнал: Клиническая практика @clinpractice

Рубрика: Обзоры

Статья в выпуске: 4 т.12, 2021 года.

Бесплатный доступ

Статья посвящена анализу современного состояния регенеративно-реабилитационного лечения повреждений скелетных мышц, возможностям восстановления функций мышечной ткани, утраченных в результате старения, травм или болезней. Изучение молекулярно-генетических основ механотрансдукции и механотерапии позволит идентифицировать гены и молекулы, уровни экспрессии которых могут служить биомаркерами эффективности регенеративно-реабилитационных мероприятий. Эти механизмы представляют собой потенциальные терапевтические мишени для стимуляции регенерации скелетных мышц. Основное внимание в статье обращается на выбор индивидуального подхода как при проведении фундаментальных научных исследований, так и при разработке программ реабилитации. Все это позволит значительно улучшить результаты лечения пациентов.

Еще

Скелетные мышцы, реабилитация, регенерация, физиотерапия, механотрансдукция, механотерапия, молекулярно-генетический механизм

Короткий адрес: https://sciup.org/143178090

IDR: 143178090   |   DOI: 10.17816/clinpract70873

Список литературы Регенеративная реабилитация повреждений скелетных мышц

  • Rando TA, Ambrosio F. Regenerative rehabilitation: applied biophysics meets stem cell therapeutics. Cell Stem Cell. 2018; 22(3):306-309. doi: 10.1016/j.stem.2018.02.003
  • Thompson WR, Scott A, Loghmani MT, et al. Understanding mechanobiology: physical therapists as a force in mechanotherapy and musculoskeletal regenerative rehabilitation. Phys Ther. 2016;96(4):560-569. doi: 10.2522/ptj.20150224
  • Dunn SL, Olmedo ML. Mechanotransduction: relevance to physical therapist practice-understanding our ability to affect genetic expression through mechanical forces. Phys Ther. 2016;96(5): 712-721. doi: 10.2522/ptj.20150073
  • Becker C, Lord SR, Studenski SA, et al. Myostatin antibody (LY2495655) in older weak fallers: a proof-of-concept, randomized, phase 2 trial. Lancet Diabetes Endocrinol. 2015;3(12):948-957. doi: 10.1016/S2213-8587(15)00298-3
  • Curtis CL, Goldberg A, Kleim JA, Wolf SL. Translating ge-nomic advances to physical therapist practice: a closer look at the nature and nurture of common diseases. Physical Therapy. 2016;96(4):570-580. doi: 10.2522/ptj.20150112
  • Chen YW, Gregory C, Ye F, et al. Molecular signatures of differential responses to exercise trainings during rehabilitation. Biomed Genet Genom. 2017;2(1). doi: 10.15761/BGG.1000127
  • Martone AM, Marzetti E, Calvani R, et al. Exercise and protein intake: a synergistic approach against sarcopenia. Biomed Res Int. 2017;2017:2672435. doi: 10.1155/2017/2672435
  • Landi F, Calvani R, Tosato M, et al. Protein intake and muscle health in old age: from biological plausibility to clinical evidence. Nutrients. 2016;8(5):295. doi: 10.3390/nu8050295
  • World Health Organization. Global Recommendations on Physical Activity for Health. Geneva, Switzerland: WHO; 2010. Available from: http://apps.who.int/iris/bitstream/10665/44399/1/ 9789241599979_eng.pdf
  • Cartee GD, Hepple RT, Bamman MM, Zierath JR. Exercise promotes healthy aging of skeletal muscle. Cell Metabolism. 2016;23(6):1034-1047. doi: 10.1016/j.cmet.2016.05.007
  • Bowen TS, Schuler G, Adams V. Skeletal muscle wasting in cachexia and sarcopenia: molecular pathophysiology and impact of exercise training. J Cachexia Sarcopenia Muscle. 2015;6(3):197-207. doi: 10.1002/jcsm.12043
  • Nunes PR, Barcelos LC, Oliveira AA, et al. Effect of resistance training on muscular strength and indicators of abdominal adiposity, metabolic risk, and inflammation in postmenopausal women: controlled and randomized clinical trial of efficacy of training volume. Age. 2016;38(2):40. doi: 10.1007/s11357-016-9901-6
  • Facer-Childs E, Brandstaetter R. The impact of circa-dian phenotype and time since awakening on diurnal performance in athletes. Current Biology. 2015;25(4):518-522. doi: 10.1016/j.cub.2014.12.036
  • Marzetti E, Calvani R, Cesari M, et al. Operationalization of the physical frailty & sarcopenia syndrome: rationale and clinical implementation. Transl Med UniSa. 2016;13:29-32.
  • Corona BT, Rivera JC, Greising SM. Inflammatory and physiological consequences of debridement of fibrous tissue after volumetric muscle loss injury. Clin Transl Sci. 2018;11(2):208-217. doi: 10.1111/cts.12519
  • Rivera JC, Corona BT. Muscle-related disability following combat injury increases with time. US Army Med Dep J. 2016;30-34.
  • Greising SM, Warren GL, Southern WM, et al. Early rehabilitation for volumetric muscle loss injury augments endogenous regenerative aspects of muscle strength and oxidative capacity. BMC Musculoskelet Disord. 2018;19(1):173. doi: 10.1186/s12891-018-2095-6
  • Aurora A, Roe JL, Corona BT, Walters TJ. An acellular biologic scaffold does not regenerate appreciable de novo muscle tissue in rat models of volumetric muscle loss injury. Biomaterials. 2015;67:393-407. doi: 10.1016/j.biomaterials.2015.07.040
  • Quarta M, Cromie M, Chacon R, et al. Bioengineered constructs combined with exercise enhance stem cell-mediated treatment of volumetric muscle loss. Nat Commun. 2017;8:15613. doi: 10.1038/ncomms15613
  • Corona BT, Wenke JC, Ward CL. Pathophysiology of volumetric muscle loss injury. Cells Tissues Organs. 2016;202(3-4): 180-188. doi: 10.1159/000443925
  • Garg K, Ward CL, Rathbone CR, Corona BT. Transplantation of devitalized muscle scaffolds is insufficient for appreciable de novo muscle fiber regeneration after volumetric muscle loss injury. Cell Tissue Res. 2014;358(3):857-873. doi: 10.1007/s00441-014-2006-6
  • Hurtgen BJ, Ward CL, Garg K, et al. Severe muscle trauma triggers heightened and prolonged local musculoskeletal inflammation and impairs adjacent tibia fracture healing. J Musculoskelet Neuronal Interact. 2016;16(2):122-134.
  • Sadtler K, Estrellas K, Allen BWDeveloping a pro-regenerative biomaterial scaffold microenvironment requires T-helper 2 cells. Science. 2016;352(6283):366-370. doi: 10.1126/science.aad9272
  • Lai S, Panarese A, Lawrence R, et al. A murine model of robotic training to evaluate skeletal muscle recovery after injury. Med Sci Sport Exerc. 2017;49(4):840-847. doi: 10.1249/MSS.0000000000001160
  • Gottardi R, Stoddart MJ. Regenerative rehabilitation of the musculoskeletal system. J Am Acad Orthop Surg. 2018;26(15): e321-e323. doi: 10.5435/JAA0S-D-18-00220
  • Polli A, Ickmans K, Godderis L, Nijs J. When environment meets genetics: a clinical review of the epigenetics of pain, psychological factors, and physical activity. Arch Phys Med Rehabil. 2019;100(6): 1153-1161. doi: 10.1016/j.apmr.2018.09.118
  • Bianchi M, Renzini A, Adamo S, Moresi V. Coordinated actions of microRNAs with other epigenetic factors regulate skeletal muscle development and adaptation. Int J Mol Sci. 2017;18(4):E840. doi: 10.3390/ijms18040840
  • Denham J, Marques FZ, O'Brien BJ, Charchar FJ. Exercise: putting action into our epigenome. Sports Med. 2014;44(2):189-209. doi: 10.1007/s40279-013-0114-1
  • Brown WM. Exercise-associated DNA methylation change in skeletal muscle and the importance of imprinted genes: a bioin-formatics meta-analysis. Br J Sports Med. 2015;49(24):1568-1578. doi: 10.1136/bjsports-2014-094073
  • Seaborne RA, Strauss J, Cocks M, et al. Human skeletal muscle possesses an epigenetic memory of hypertrophy. Sci Rep. 2018;8(1):1898. doi: 10.1038/s41598-018-20287-3
  • Horsburgh S, Robson-Ansley P, Adams R, Smith C. Exercise and inflammation-related epigenetic modifications: focus on DNA methylation. Exerc Immunol Rev. 2015;21:26-41.
  • Kirby TJ, Chaillou T, McCarthy JJ. The role of microRNAs in skeletal muscle health and disease. Front Biosci (Landmark Ed). 2015;20:37-77.
  • Ogasawara R, Akimoto T, Umeno T, et al. MicroRNA expression profiling in skeletal muscle reveals different regulatory patterns in high and low responders to resistance training. Physiol Genomics. 2016;48(4):320-324. doi: 10.1152/physiolgenomics.00124.2015
  • Rivas DA, Lessard SJ, Rice NP, et al. Diminished skeletal muscle microRNA expression with aging is associated with attenuated muscle plasticity and inhibition of IGF-1 signaling. FASEB J. 2014;28(9):4133-4147. doi: 10.1096/fj.14-254490
  • Zacharewicz E, Della Gatta P, Reynolds J, et al. Identification of microRNAs linked to regulators of muscle protein synthesis and regeneration in young and old skeletal muscle. PLoS One. 2014;9(12):e114009. doi: 10.1371/journal.pone.0114009
  • Zhang T, Birbrair A, Wang ZM, et al. Improved knee extensor strength with resistance training associates with muscle specific miRNAs in older adults. Exp Gerontol. 2015;62(1):7-13. doi: 10.1016/j.exger.2014.12.014
  • Hu Z, Klein JD, Mitch WE, et al. MicroRNA-29 induces cellular senescence in aging muscle through multiple signaling pathways. Aging. 2014;6(3):160-175. doi: 10.18632/aging.100643
  • Dias RG, Silva MS, Duarte NE, et al. PBMCs express a transcriptome signature predictor of oxygen uptake responsiveness to endurance exercise training in men. Physiol Genomics. 2015;47(2):13-23. doi: 10.1152/physiolgenomics.00072.2014
  • Abbasi A, Hauth M, Walter M, et al. Exhaustive exercise modifies different gene expression profiles and pathways in LPS-stimulated and un-stimulated whole blood cultures. Brain Behav Immun. 2014;39:130-141. doi: 10.1016/j.bbi.2013.10.023
  • Tonevitsky AG, Maltseva DV, Abbasi A, et al. Dynamically regulated miRNA-mRNA networks revealed by exercise. BMC Physiol. 2013;13:9. doi: 10.1186/1472-6793-13-9
Еще
Статья обзорная