Regularity results and solution semigroups for retarded functional differential equations
Автор: Favini A., Tanabe H.
Рубрика: Математическое моделирование
Статья в выпуске: 1 т.10, 2017 года.
Бесплатный доступ
We show that the solutions of the retarded functional differential equations in a Banach space, whose existence and uniqueness are established in paper of A. Favini and H. Tanabe, have some further regularity properties if the initial data and the inhomogeneous term satisfy some smootheness assumptions. Some results on the solution semigroups analogous to the one of G. Di Blasio, K. Kunisch and E. Sinestrari and to the one of E. Sinestrari are also obtained.
Retarded functional differential equation, regularity of solutions, analytic semigroup, solution semigroup, c0-semigroup, infinitesimal generator, c0-полугруппы
Короткий адрес: https://sciup.org/147159414
IDR: 147159414 | DOI: 10.14529/mmp170104
Текст научной статьи Regularity results and solution semigroups for retarded functional differential equations
We consider the following retarded functional differential ecpiation in a. complex Banach space X.
d u dt
( t )— Au ( t ) + A 1 u ( t — r ) + I a ( s ) A 2 u ( t + s ) ds + f ( t ) , 0 < t < T, ^ ^.^
( u (0) — ф 0 , u ( s ) — ф 1( s ) a . e . s E ( —r, 0) .
We assume that A is a densely defined closed linear operator which generates an analytic semigroup) et A ,t > 0. in X. Sup) pose 0 E p ( A ) for simplicity. A 1 at id A 2 are closed linear operators in X such that D ( A 1) D D ( A ) , D ( A 2) D D ( A ). at id a is a, complex valued
function defined in the interval [ —r, 0] such that a E L 1 ( —r, 0; C).
The following theorems which are improvements of the results by G. Di A. Lorenzi [1] are established in A. Favini and H. Tanabe [2]:
Blasio and
(0.2)
(0.3)
Theorem A Suppose 0 <6 < 1 /p. If the following assumption is satisfied: (I) фо E (X,D(A))6+1 -1 /p,p, ф1 E W(—r, 0; D(A)), f E W(0,T; X). then, there exists a unique solution u of (0.1) satisfying u E W6,p(0, T; D(A)) П C([0, T]; (X, D(A))6+1 -1 /p,p), du/dt E W6'p (0,T; X).
Theorem В Suppose 1 /p <6 < 1. If the following assumption is satisfied:
(W
/
фо E D(A), ф 1 E W6,p(—r 0; D(A)), ф 1(0) — Фо, f e W6p(0,T; X) n C([0, T]; (X, D(A))6-1 /„),
AФ0 + A1 ф 1(—r) + J a(s) A2ф 1(s)ds E (X,D ( A))6-1 /p,p, then, problem (1.1) admits a unique solution u such that u G W6'p(0,T; D(A)),
(0.4)
(0.5)
du/dt G W6 ’ p (0 ,T ; X ) П C ([0 ,T ]; ( X, D ( A )) 6- 1 /p ) .
Note that since A 2 ф 1 G C ([ —r, 0]; X ), the integral J - a ( s ) A 2 ф 1 ( s ) ds is well defined.
In this paper we prove further regularity of solutions u when ф 1 and f satisfy more regularity assumptions. Using this result we prove some results on solution semigroups analogous to the one of G. Di Blasio, K. Kunisch and E. Sinestrari [3] when 6 < 1 /p. and to the one of E. Sinestrari [4] when 6 > 1 /p. In case 6 < 1 /p it is shown that the map ^ ф0 ^ ^ ^ u^) ^, where u is the solution of (0.1) with f (t) = 0 and ut(s) = u(t + s), —r < s < 0, is a C0-semigroup in (X, D(A))6+1 - 1 /p,p x W6,p(—r, 0; D(A)), and the characterization of its infinitesimal generater is given. This is nothing but a simple extention of a result of [3] in case where X is a Hilbert space and 6 = 1, p = 2. However, in case 6 > 1 /p the situation is a little more complicated. This is caused by the following fact. In this case there appears the space (X,D(A))6+1 - 1 /p,p which is a subset of D(A). If u belongs to this space. Aiu, i = 1, 2, is defined, lout may not belong to (X,D(A))6- 1 /p,p. Therefore we assume the additional condition AiA-1 G L((X,D(A))6- 1 /p,p), i = 1, 2. A comment on this assumption will be given in section 6. Under these hypotheses it will be shown that the map ф 1 ^ ut Co-semigroup in W6,p(—r, 0; D(A)) П C([—r, 0]; (X, D(A))6+1 -1 /p,p) with characterization of its infinitesimal generater, where again u is the solution of with f (t) = 0 arid ut(s) = u(t + s), —r < s < 0.
For a, Banach space Y we use the following norm of W 6,p (0 , T ; Y ):
N 6,p,Y, (0 ,T ) ( u )= (^0 ^ \\u ( t ) — u ( s ) ^ Y ( t — s ) - 1 - 6p dsdt ) ,
HuH w 6,p (0 ,T ; Y ) = N 6,p,Y, (0 ,T ) ( u ) + T -6 \u\ lp (0 ,T ; Y ) •
is а. the (0.1)
(0.6)
1. Regularity of Solutions: Case 9 < 1 /p
First consider the case 0 <6 < 1 /p. Assume that:
' ф 1 g W 1+ 6,p ( —r, 0; D ( A )) , ф о = ф 1 (0) ( G D ( A )) ,
(И)
f G W 1+(0 , T ; X ) П C ([0 , T ]; ( X, D ( A )) 6 +1 - 1 /p,p ) ,
AT 0 + A 1 ф 1 ( — r )+ / a ( s ) A 2 ф 1 ( s ) ds G ( X ,D ( A )) 6 +1 - 1 /p,p .
-r
Theorem 1. Suppose 0 <6 < 1 /p. Then, under assumption (1-1) the solution of problem (0.1) satisfies u g W1+6,p(0,T; D(A)) П W2+6,p(0,T; X) Fl C 1([0,T]; (X, D(A))6+1-1 /pp)• (Tl)
Since (1-1) is stronger than (I), in view of Theorem A a solution u of (0.1) exists and satisfies (0.2) and (0.3). Set фо = AФо + A1 ф 1(—r) + j a(s)A2ф 1(s)ds + f(0) •
(1.2)
Then (1-1) implies
Ф о E ( X,D ( A )) 8 +i - 1 /p,p , ф 1 E W 6p ( —r, 0; D ( A )) , f ' E W 6p (0 ,T ; X ) .
Namely, (I) is satisfied by ф о , ф 1 , f ' instead of ф о , Ф 1 , f. Therefore there exists a unique solution v of the following problem:
v' ( t ) = Av ( t ) + A 1 v ( t
-
r ) + /
-r
a ( s ) A 2 v ( t + s ) ds + f ' ( t ) ,
0 < t < T,
(L3)
v (0) = ф 0 , v ( s ) = ф 1 ( s ) a . e . s E ( —r, 0)
{ v E W ",p (0 ,T ; D ( A )) П C ([0 ,T ];( X,D ( A )) » +1 - 1 / „) , ( dv/dt E W6p (0 ,T ; X ) .
Set w ( t ) = ф о + f t v ( т ) dT. Then in A'iew of (1.4)
Г w ' E W 6,p (0 ,T ; D ( A )) П C ([0 ,T ]; ( X,D ( A )) 6 +1 - 1 /pp ) , ( w '' e W 6,p (0 ,T ; X ) .
Since ф о E D ( A ) , v E W 6p (0 ,T ; D ( A )) C U p (0 ,T ; D ( A )). one lias
w ( • ) = Ф о +
L
v ( T ) dT E C ([0 ,T ]; D ( A )) C U p (0 ,T ; D ( A )) .
(1.4)
(1.5)
(1.6)
In view of (1.5) w ' E W 6p (0 ,T ; D ( A )) C U p (0 ,T ; D ( A )). By virtue of tins and (1.6)
w E W 1 ’p (0 ,T ; D ( A )) C W 6’p (0 ,T ; D ( A )) . (1.7)
It follows from (1.7) and (1.5) that w e W1+6’p (0, T; D(A)) П W2+6’p (0, T; X).
Since D(A) C (X, D(A))6+1 -1 /p,p, one has w E C([0,T]; D(A)) C C([0,T]; (X,D(A))6+1 -1 /p,p).
From this and (1.5) it follows w E C 1([0,T];(X,D(A))6+1 -1 /p,p). (1.8)
We are going to show
w ( t )= u ( t ) , 0 < t < T. (1.9)
If this is proved, then (1.1) follows from (1.7) and (1.8).
Set v ( t ) = ^ Фф-) ) ^<<< <’ 0 Then, v E W 6p ( —r,T ; D ( A )). Problem (1.3) is transformed to the following integral ecpiation:
v(t) = е*Афо + [ e(t s)AA1 v(s — r)ds + / e(t s)A / a(а)A2v(s + а)dads о о -r
+ e ( t - s ) A f ' ( s ) ds. (1.10)
This implies
[ v ( т ) dT = [ eт A ф 0 dT + [ [ e ( T-s ) A A 1 v ( s — r ) dsdT 0 0 0 0
+ / / e ( T-s ) A[ a ( a ) A 2 v ( s + a ) dadsdT + / [ e ( T - s ) A f ‘ ( s ) dsdT. (1.11) 00 -r 00
-
(i) Case T < r. In view of the definition (1.2) of ф 0 one observes
[t e TA p 0 dT = [ e tA - IA 1 Ф ,
= ^Ф 0 — Ф 0 + [ e A — I ] A 1 ( A 1 Ф 1( — r ) + У a ( s ) A 2 Ф 1( s ) ds + f (°) ) . (1.12)
With the aid of a. change of the order of integration and an integration by parts
/ / e ( т s ) A A 1 v ( s — r ) dsdT = / / e ( T s ) A A 1 ф 1 ( s — r ) dsdT 00 00
= [ [ e ( t - s ) A — I ] A - 1 A 1 ф 1 ( s — r ) ds 0
= — [ e tA — I ] A - 1 A 1 ф 1 ( —r ) + У e ( t - s ) A A 1 ф 1 ( s — r ) ds.
(1.13)
Again changing the order of integration and integrating by parts one obtains
[t Г e(T-s)A /0 a(a)A2v(s + a)dadsdT = Г Г e(T-s)A /0 a(a)A2v(s + a)dadTds 0 0 -r 0 s-r t0 tt
= / a(a) e(T-s)AdTA2v(s + a)dads = / / a(a)[e(t-s)A — I]A-1A2v(s + a)dads 0 -r s0
= t [ e ( t-s ) A
— I ] A - 1 /
-
s a (a) A 2 ф1( s + a) dads
r
+ Г [ e ( t - s ) A 0
where |
I 1 = У [ e ( t s ) A — I ] A 1 У a ( a ) A 2 ф 1 ( s + a ) dads, I2 = У [ e ( t - s ) A — I ] A - 1 У a ( a ) A 2 v ( s + a ) dads. |
Changing the order of integration and integrating by parts yield
I1 = У a ( a ) У [ e ( 1 1 ) A — I ] A 1 A 2 ф 1 ( s + a ) dsda
+ / a ( a ) / [ e ( 1 - 1 ) A — I ] A - 1 A 2 ф 1 ( s + a ) dsda 1
=у a ( a ) { - [ e tA
-
I ] A 1 A 2 ф 1 ( a ) + У e ( 1 1 ) A A 2 ф 1 ( s + a ) ds j> da
+y 1 a ( a ) u + A ( a ) {
e ( t + a ) A
-σ
-
I ] A - 1 A 2 ф 1 (0) — [ e 1A — I ] A - 1 A 2 ф 1 ( a )} da
e ( 1 1 ) A a 2 ф 1 ( s + a ) ds j- da
-
/ a ( a )[ e 1A — I ] A 1 A 2 ф 1 ( a ) da + -r
-r a ( a ) 0 e ( 1 1 ) A a 2 ф 1( s + a ) dsda
+ [ a ( a )[ e ( 1 + a ) A — I ] A - 1 A 2 ф 1 (0) da + [ a ( a ) [
-1 -1
-
σ
e ( 1 - 1 ) A a 2 ф 1 ( s + a ) dsda.
The sum of the second and fourth terms of the last side of the above equalities is equal to
/1 e ( 1-1 ) A / 1 a
Jo J-r
=г e ( -1 ) A/. ,.
(a) A2 ф 1( s + a) dads + У e(1 1) A У s a (a) A 2 ф 1( s + a) dads.
t
s a (a) A 2 ф 1( s + a) dads
Therefore
I 1 = — У a ( a )[ e 1A — I ] A - 1 A 2 ф 1 ( a ) da + У a ( a )[ e ( 1 + a ) A
— I ] A - 1 A 2 ф 1 (0) da
+ e ( 1 - 1 ) A L
s a (a) A 2 Ф 1( s + a) dads.
(1.15)
r
We can show without difficulty
I2 = У a ( a ) У [ e ( 1 1 ) A — I ] A 1 A 2 v ( s + a ) dsda
= [ * a ( a ) Г [ e ( 1 - 1 ) A
-t -σ
— I] A 1-^~ [ A2v (т) dTdsda ds
= [ * a ( a ) Г e ( 1 - 1 ) A Г + " A 2 v ( т ) dTdsda -1 -a Vo
= / a ( a ) / e ( 1 - 1 ) A A 2 -t -σ
= У a ( a ) У e ( 1 - 1 ) A A 2
^ф 0 + У v ( т ) dT^ dsda — j a ( a
^ф 0 + У v ( т ) dT^ dsda
) У e ( 1 1 ) A A 2 ф о dsda
+ У a ( a )[ I — e ( 1 + a ) A ] A 1 A 2 ф 0 da.
(1.16)
From (1.14) - (1.16) and ф 0 = ф 1(0) it follows that
[ [ e ( T - s ) A [ a ( a ) A 2 v(s + a ) dadsdr = I 1 + I2 0 0 -r
— / a ( a )[ e tA — I ] A 1 A 2 ф i ( a ) da +
-r
L * e 1 t-s ) A L
s a (a) A 2 ф 1( s + a) dads
— I ] A 1 У a ( a ) A 2 v ( s + a ) dads = I 1 + I2 ,
(1.14)
+ £ a ( а ) - e ' t-s • a A 2 ( ф о + f ’ v ( т ) dr) dsda.
(1.17)
As is easily seen
[ [ e ( T - s ) A f ‘ (s ) dsdr = [ [ e ( T - s ) A drf ‘ (s ) ds = [ [ e ( t - s ) A - I ] A - 1 f ‘ (s ) ds
0 0 0 s 0
-
[ e tA - I ] A - 1 f (0) + j0 t e ( t - s ) A f ( s ) ds.
(1.18)
From (1.11) - (1.13), (1.17), (1.18) the following equality follows easily:
w ( t ) = e tA ф 0 + j e ( t s ) A A 1 ф 1 ( s — r
) ds + / t e ( t - s ) A J
s
a ( a ) A 2 dads
+ - a ( a )£ e < t
s ) A A 2 w ( s + a ) dsda + ^ e ( t s ) A f ( s ) ds.
(1.19)
. ( w(t) 0 < t < T, bet w(t) = < А „ then 1.19 is rewritten as
( ф 1( t ) —r < t < 0 .
w ( t ) = e tA ф 0 + / e ( t s ) A A 1 w( s — r ) ds + / e ( t s ) A / a ( a ) A 2 fu( s + a ) dads 0 0 -r
+ e ( t - s ) A f ( s ) ds.
Consequently (1.9) is obtained.
-
(ii) Case r < T < 2 r. By virtue of the result estalohshed in the previous case 0 < T < r we already know that w ( t ) = u ( t ) for 0 < t < r. Hence
w ( t ) = ф 0 + v ( т ) dr + v ( т ) dr = w ( r ) + v ( т ) dr = u ( r ) + v ( т ) dr. 0 r r r
Since
Au(r) + A1 u(0) + - a(s) A2u(r + s)ds = U(r) — f (r) G (X, D(A))e+1 -1 /p,p, the following facts hold:
' u ,0 ,r ] G W 1+ ”,p (0 ,r ; D ( A )) ,
_ f G W 1+ »,p ( r, T ; X ) П C ([ r,T ]; ( X, D ( A )) , +1 - 1 /p,p ) ,
Au [0 ,r ] ( r ) + A 1 u [0 ,r ] (0) + j a ( s ) A 2 u [0 ,r ] ( r + s ) ds G ( X,D ( A )) 9 +1 - 1 /p,p .
Hence (1-1) is satisfied with [ — r, 0], ф 1 replaced by [0 , r ], u [ 0 ,r ] respectively. Therefore, by the method of the previous case we can show w ( t ) = u ( t ) for r < t < T.
We can proceed to show (1.9) in the general case, and the proof of Theorem 1 is complete.
In case 1 /p <6 < 1 we assume
(П-1)
/
Ф 1 G W 1+ 6’p ( — r, 0; D ( A )) ( = ^ ф 1 (0) G D ( A )) , f G W 1+ 6’p (0 ,T ; X ) П C 1 [0 ,T ]; ( X,D ( A )) 6- 1 /p,p ) ,
А ф 1 (0) + A 1 ф 1 ( — r ) + У a ( s ) A 2 ф 1 ( s ) ds G ( X,D ( A )) 6- 1 /p,p ,
А ф ‘ 1 (0) + A 1 ф ‘ 1 ( — r ) + У a ( s ) A 2 ф ‘ 1 ( s ) ds G ( X,D ( A )) 6- 1 /p,p , ф ‘ 1 (0)(= D - ф 1 (0)) = Аф 1 (0) + A 1 ф 1 ( — r ) + f 0r a ( а ) A 2 ф 1 ( а ) da + f (0) .
Theorem
(0.1) satisfies
2. Suppose 1 /p < 6 < 1. If assumption (II-l) i.s satisfied, the solution u of
u g W 1+ 6,p (0 ,T ; D ( A )) П W 2+ 6,p (0 ,T ; X ) П C 2([0 ,T ];( X,D ( A )) 6- 1 /p,p ) • (1.20)
If hypothesis (II-l) holds, then (II) is satisfied by ф1 and f ‘ in pl ace of ф 1 and f respectively. Therefore according to Theorem В there exists a unique solution v of the following problem d v dt
( t ) = Av ( t ) + A 1 v ( t — r ) + j a ( s ) A 2 v ( t + s ) ds + f ‘ ( t ) ,
(1.21)
v ( s ) = ф 1 ( s ) , — r < s < 0
(1.22)
satisfying v G W6'p (0,T; D (A)), dv/dt G W6,p(0, T; X) П C([0, T]; (X, D(A))6-1 /p).
(1.23)
(1.24)
Set
w ( t ) = ф о + У v ( т ) dT.
(1.25)
In view of (1.23), (1.24) one has w‘ G W6'p (0,T; D (A)),
(1.26)
(1.27)
w M G W 6,p (0 , T ; X ) П C ([0 ,T ]; ( X,D ( A )) 6- 1 /p,p ) .
Since 6 > 1 /p. W 6'p (0 ,T; D (A)) C C ([0 ,T ]; D (A)). He nee v G C ([0 ,T ]; D (A)). From tins and фо G D(A) it followvs that w G C 1([0,T]; D(A)). Tins implies w G W1 ’p(0,T; D(A)) C W6,p(0, T; D(A)). Hence with the aid of (1.26), (1.27) we deduce w g wi+6,p (o, t. d( a)) n w2+e,P (0, t. x).
(1.28)
Since D (A) С (X,D (A)) g- 1 /p,p, one al so has w E C 1([0 ,T ]; (X,D (A)) g- 1 /p,p). From this and (1.27) it follows that w E C2([0, T];(X, D(A))g-1/p,p).
(1.29)
If it is shown that w ( t ) = u ( t ) , 0 < t < T , then in view of (1.28) and (1.29) the proof of Theorem 2 is complete. This part of the proof is almost the same as that of Theorem 1, and so it is omitted.
2. Solution Semigroup: Case 9 < 1 /p
Suppose assumption (I) is satisfied. Set
Z = ( X, D ( A )) g +i - 1 /p,p x W g,p ( —r, 0; D ( A )) .
Following G. Di Blasio, K. Kunisch and E. Sinestrari [3] the solution semigroup for (0.1) is defined as follows:

S (t >( £)=( ■t ’P>0 •for Go) e Z where и is the solution of problem (0.1) with f (t) = 0. aiid и
-r < t < 0
и t ( s ) = b( t + s ) fc>r —r < s < 0. Siiice и E W g,p (0 , to ; D ( A )) П C ([0 , to ); ( X,D ( A )) g +1 - 1 /p,p ), where и E W g,p (0 , to ; D ( A )) means и E W g,p (0 , T ; D ( A )) for any 0 < T < to. и ( t ) E ( X-D ( A )) g +1 - 1 /p,p fc>r t > 0. b E W g,p ( —r, to ; D ( A )). and hence и t E W g,p ( —r, 0; D ( A )) for 0 < t < to. Thei‘efore S ( t ) : Z ^ Z and S (0) = I. It can be shown without difficulty that S ( t ) is a C o-semigroup in Z.
Theorem 3. The infinitesimal generater of the solution semigroup S ( t ) is given by

; ф i e W 1+ g,p ( —r, 0; D ( A )) , ф i (0) = ф o ,
A ф o + A 1 ф 1 ( — r )+ / a ( s ) A 2 ф 1 ( s ) ds E ( X,D ( A )) g +i - 1 /p,p
Л ( ф o ) = ( Aф o + A i ф i ( —r ) + J' 0 r a ( s ) A 2 ф i ( s ) ds φ 1 φ ′ 1
This theorem can be establised by showing the following statements following G. Di Blasio, K. Kunisch and E. Sinestrari [3]:
-
(1) S ( t ) D (Л) С D (Л) ,
(h) D (Л) is deiise in Z,
(hi) Л С iiffiiiitesinial generator of {S ( t ) },
(iv) Л : D (Л) С Z ^ Z is closed .
Problem (0.1) is rewritten as

^“ 1 t ))=л( “(t )) + ( f ( t > T 0 < t < T dt “ t “ t 0 у
“(0) A = ( фo u0 φ1
(2.2)
The mild solution of (2.2) is expressed as
(t t )) = s - 1 ) ( ф 0 ) + £ * s - 1 - s ) ( f о ) ) ds.
Ч Ф 0) e solution, and
D (Л) arid f e C 1([0 ,T ];( X,D ( A )) 6 +1 - 1 /p,p ). then
(ub\ 1)
is a strict
u e C 1([0,T];(X,D(A))6+1 - 1 /p,p), b e C 1([0, T]; W6,p(-r, 0; D(A))), (2.3)
d ( U ’ ) = S - 1 )Л ( ф 0 ) + S ( t ) ( f 0 0) ) + / * S - 1 - s ) ( f ' 0 s ) ) ds.
Starting from u e C([0,T]; Lp(-r, 0; D(A))) ^ u e Lp(-r,T; D(A))
one can show that (2.3) is equivalent to b e W 1+ 6,p ( -r/T ; D ( A )). Thus the following assertion holds:
Theorem 4. If the following assumptions are satisfied:
ф 1 e W 1+ 6,p ( -r, 0; D ( A )) , ф о = ф 1 (0) , f e C 1 ([0 ,T ]; ( X, D ( A )) 6 +1 - 1 /p,p ) ,
Aф0 + A1 ф 1(-r) + J-r a(s)A2ф 1(s)ds e (X,D(A))6+1 -1 /p,p, then a solution of (0.1) satisfying u e W1+6,p(0,T; D(A)) П C 1([0,T]; (X, D(A))6+1 -1 /p,p)
exists and is unique.
3. Regularity of Solutions: Case 0 > 1 /p
In this section we suppose that the following assumptions are satisfied:
(11-2) A 1 A - 1 , A 2 A - 1 e L(( X,D ( A )) 6- 1 /p,p , ( X,D ( A )) 6- 1 /p,p )■
(п-3) I
ф 1 e W 6,p ( -r, 0; D ( A )) П C ([ -r, 0]; ( X,D ( A )) 6 +1 - 1 /p,p ) , f e W 6,p (0 ,T ; X ) n C ([0 ,T ]; ( X, D ( A )) 6- 1 /p,p ) .
Remark 1. Set ф 0 = ф 1 (0). Then it follows from (II-3) that ф 0 e ( X,D ( A )) 6 +1 - 1 /p,p. Hence Aф 0 e ( X,D ( A )) 6- 1 /p,p. Frот ф 1 e C ([ -r, 0]; ( X,D ( A )) 6 +1 - 1 /p,p ) it follows that
A Ф 1 e C ([ -r, 0] ; ( X,D ( A )) 6- 1 /p,p ) , j a ( s ) A ф 1 ( s ) ds e ( X,D ( A )) 6- 1 /p-p ■
Hence by (H-2)
A 1 ф 1 e C ([ -r, 0] ; ( X,D ( A )) 6- 1 /p,p ) , j a ( s ) A 2 ф 1 ( s ) d s e ( X,D ( A )) 6- 1 /p,p . (3.1)
Hence the final condition of (II) is satisfied. Therefore (H-2) and (H-3) imply (II).
Remark 2. (H-2) is equivalent to
A i e L(( X, D ( A ))6 +1 - 1 /p,p , ( X, D ( A )) e- 1 /p,p ) , i = 1 , 2 .
A comment on assumption (H-2) will be given in the final section.
Theorem 5. Suppose 9 > 1 /p, and assumptions (II-2) and (II-3) are satisfied. Then the solution u of problem (0.1) satisfies
u e W p (0 , T ; D ( A )) П C ([0 , T ]; ( X, D ( A )) e +1 _ 1 ,„, ) , di/» e W ep (0 ,T ; X ) П C ([0 ,T ]; ( X, D ( A )) ,— 1 /p „) .
(3.2)
(3.3)
Suppose first T < r. Let u 0 be the function defined by
t uo(t)= etA[ф 1 (0) + A-1 f(0)] + уо e(t-s)Af.(s)ds — A-1 f(0),
(3.4)
where
f ( s ) = A 1 ф 1 ( s — r ) + f ( s )+ / a ( a ) A 2 ф 1 ( a ) da,
e ( s ) = f ( s ) — ,e(0) = A 1 ф 1 ( s — r ) + f ( s ) — A 1 ф 1 ( — r ) — f (0) .
It follows from (11-3) and (3.1) that
f e W e,p (0 ,T ; X ) П C ([0 ,T ];( X,D ( A )) e- 1 /p,p ) , f e W6/ (0 ,T ; X ) П C ([0 ,T ]; ( X,D ( A )) e- 1 /pp ) , ф 0 + A f (0) e ( X,D ( A )) 6 +1 - 1 /p,p .
(3.5)
(3.6)
(3.7)
The solution of (0.1) is obtained as the solution of the following integral ecpiation
u ( t )= u 0( t ) + j e ( t s ) A j a ( a )[ A 2b( s + a ) — A 2 ф 1 ( a )] dads,
(3.8)
where b( s ) = ^ ф ^) S ^ 0’ This equation is sovled by successive approximation:
u n +1 ( t )= u o ( t ) + 0 e ( ts ) A - a ( a )[ A 2 b n ( s + a ) — A 2 ф 1 ( a )] dads, n = 1 , 2 , 3 ,.... (3.9)
It is shown in A. Favini and H. Tanabe [2] that u n e W 6,p (0 ,T ; D ( A )) , u n (0) = ф 0 , n = 0 , 1 , 2 ,... . From (3.9) it follows that
U n + 1 ( t )
-
u n ( t ) = J e ( t s ) A J a ( a )[ A 2 b n ( s + a ) —
A 2 u n
1 ( s + a )] dads. (3.10)
If —r < a < —T. then s + a < t — T < 0. Hence
A 2 u n ( s + a ) — A 2 u n- 1 ( s + a ) = ф 1 ( s + a ) — ф 1 ( s + a ) = 0 .
Therefore (3.10) is rewritten as
U n + 1 ( t )
-
u n
( t ) = f J 0
e ( t-s ) A
I a ( a )[ A 2 b n (
s + a ) — A 2 b n- 1 ( s + a )] dads.
(3.11)
It is proved in [2] that
11 u n +1 — u n\\w 6,p (0 ,T ; D ( A)) < C 2 k 2 l l a l L 1( -T, 0) [( 9p ) 1 /p C 0 + 1 ] ll u n — u n- 11| W 9.P (0 ,T ; D ( A ))
for some constants C 0 , C 2 indeperident of T and k 2 = Ц A 2 A 1||. There fore if T is so small that
C 2 k 2H 1 ( - t, 0) [ ( Op ) - 1 /p C 0 + 1 ] < 1 , (3.12)
then
∞
^2 Hu n +1 — u n ^ W ®’p (0 ,T ; D ( A )) < ^. (3.13)
n =1
Set
W8/ (0 ,T ; X ) = {u G W p (0 ,T ; X ); u (0) = 0 }•
The following lemma is due to G. Di Blasio [5] (Theorem 10 if 9 < 1 /p and Theorem 8 if 9 > 1 /p ). Also c.f. Lemma 1 of G. Di Blasio and A. Lorenzi [1].
Lemma 1. Suppose 9 = 1 /p. If x G (X,D(A))8+1 - 1 /p,p, then e-Ax g Wp(0,T; D(A)) П C([0,T]; (X, D(A))6+1 -1 /pp)•
The following lemma is Theorem 24 of G. Di Blasio [5].
Lemma 2. Suppose 9 > 1 /p. Then, if f G W^p (0 , T ; X ), the funotion V ( t ) = jt e ( t-s ) A f ( s ) ds sayto^es
V G W8’p (0,T; D (A)), dV/dt = AV + f G C([0, T]; (X, D(A))8-1 /pp), (3.14)
and the following inequality holds with a constant C 2 independent of T;
ll
V
I
I
W
6
(0
,T
;
D
(
A
))
< C
2 ||
f
I
I
W
в»
(0
,T
;
X
)
•
(3.15)
In A. Favini and H. Tanabe [2] it is shown that the constant
C
2 above can be chosen Independent of
T
If we choose (0.6) as the norm of
W8,p
(0
, T
;
D
(
A
)).
Let
V
and
f
be as in Lemma 2. With the aid of (3.14) and (3.15) one observes
|
V
I
I
w
6
(0
,T
;
X
)
=
ll
AV
+
f
I
I
w
6-P
(0
,T
;
X
)
A |
V
I
I
w 6-p
(0
,T
;
D
(
A
)) + ll
f
I
I
w 6-p
(0
,T
;
X
)
<
(
C
2 + 1)||
f ||
w
6,p
(0
,t
;
x
)
•
(3.16)
From Lemma 2 the following lemma follows:
Lemma 3.
Suppose 9 >
1
/p. Let f G W
^’p
(0
,T
;
X
)
П C
([0
,T
];(
X,D
(
A
))
8
-
1
/p,p
).
Then,
for
V
(
t
) =
jt
e
(
t-s
)
A
f
(
s
)
ds
otic
has
V G W8,p
(0
,T
;
D
(
A
))
n C
([0
,T
]; (
X,D
(
A
))
8
+1
-
1
/p,p
)
•
In view of Lemma 1, 3 and (3.6), (3.7) one observes e-'AIФ 1(0) + A-1 f (0)] e C([0,T];(X,D(A)),+1 -, ,„),
J
,
e
-
(
-
‘
)
A
S
.
(
s
)
ds e C
([0
, T
]; (
X, D
(
A
))
,
+1
_
1
/„„
)
.
Moreover. A-1 f (0) is a, constant function with a, value in (X, D(A))6+1 _1 /p,p. Consequently u0 e C([0,T];(X,D(A))6+1_1 /pp). (3.17) (3.18)
Suppose for some
n
= 1
,
2
,...
U
n
e C
([0
,T
];(
X,D
(
A
))
9
+1
-
1
/pp
)
•
Then
u
n
e C
([
—r,T
];(
X,D
(
A
))
6
+1
-
1
/p,p
). He nee
A
2
b
n
e C
([
—r,T
];(
X,D
(
A
))
6-
1
/pp
) In view of Remark 2. Therefore it is easy to show
0
a
(
a
)[
A
2
u
n
(
■
+
a
)
- A
2
ф
Д
a
)]
da e C
([0
,T
]; (
X, D
(
A
))
6-
1
/pp
)
•
(3.19)
Since
U
n
e W
6’p
(0
,T
;
D
(
A
)). one lias b
n
e W
6p
(
—r,T
;
D
(
A
)). and lienee
A
2
U
n
e W
6,p
(
—r,T
;
X
) The following lemma is proved in A. Favini and H. Tanabe [2, Lemma 2.5]:
Lemma 4.
Suppose v e W
6p
(
—r,T
;
X
), 0
<9 <
1
, 9
= 1
/p. Hlen fO
r
r a
(
a
)
v
(
■
+
a
)
da e W6,p
(0
,T
;
X
) .
and
/ a
(
a
)
v
(
■
+
a
)
da
-r
W
6
(0
,T
;
X
)
< ^a^
L
1(
-r,
0) [
^
6,p,
(
-r,T
)
(
v
)+
T
6
Hv^
L
p
(
-r,T
;
X
)]
•
Applying Lemma 4 to
A
2b
n
one observes
f
°
a
(
a
)
A
2
b
n
(
■
+
a
)
da e W
6,p
(0
,T
;
X
). Therefore, noting (3.1) one deduces
I a
(
a
)[
A
2
bn
(
■
+
a
)
- A
2
ф
1
(
a
)]
da
=
[ a
(
a
)
A
2
b
n
(
■
+
a
)
da — / a
(
a
)
A
2
ф
1
(
a
)
da e W
^’p
(0
, T
;
X
)
•
(3.20) -r-r By virtue of (3.19), (3.20) and Lemma 3 one obtains
e
(
--s
)
A 1°
a
(
a
)[
A
2
b
n
(
s
+
a
)
—
A
2
ф
1
(
a
)]
dads e C
([0
,T
]; (
X,D
(
A
))
6
+1
-
1
/p,p
)
•
(3.21)
From (3.9), (3.17) and (3.21) it follows that (3.18) holds with
n
+ 1 in pl ace of
n.
Next, we estimate the following norm:
I|
h
Z
^
L
p
(0
,T
;(
X’D
(
A
))
6,p
)
=
(||
V
‘
W
L
p
(0
,T
.
x
)
+
|H
‘
(
t
)
|
6,p
dt
)
,
(3.22)
where
| ■ l
6,p
is the semi norm defined by
|
u
|
6,p
=
1
-6
A^Au
\\pt
-
1
dt)
i
/p
The following inequality was shown in the proof of Lemma 2 of G. Di Blasio [5]:
||V ‘^
L
p
(0
,T
;
X
)
<
((
p
-
1)
/6p
)(
p
1
/p
M
1
T
6
N
6,p,
(0
,T
)
(
f
)+
M
0
Il
f ||
lp
(0
,T
;
X
)
,
(3.23)
where
M
0.
M
1
are constants such that ||
eM|| < M
0
, |
|(
d/dt
)
eM\| < M
1
(t.
In the proof of Theorem 26 of [5, p. 81] it was shown that
/T
|V
‘
(
t
)
1
p,p
di <
24
p-
2
M
2
p
(
6
-
p
+ (1
-
6
)
—p
)
^w
)
(
f
) + (
Op
)
-
1
JT
t
-
6p
If
(
t
)
B
p
dt)
T∞
+2
p
-
1
M
p
t
-
6p
\f
(
t
)
\
p
dt
(
s
+ 1)
-
- ps
-
1+
p
-
p6
ds.
(3.24)
It is easy to show the following inequality holds for
f E W
^p
(0
, T
;
X
) with a constant
c
independent of
T:
/ r
6p
||f
(
t
)
I
p
dt < cfl/1
,
.,
(0
,TX
)
■
(3.25)
From (3.22) - (3.24) and (3.25) it follows that the following inequality holds with a constant
C
1
indepeiident of
T:
j T
|V
‘
(
t
(
I
g
di < C
1
If I
,
.,
(0
TX
)
■
(3.26)
By virtue of (3.22), (3.23) and (3.26) the following inequality holds for
f E W
®,p
(0
, T
;
X
)
with a, constant
C
2 indepeiident of
T:
II
V
‘
H
b
p
(0
, T
;(
X, D
(
A
))
ep
)
<
C
2(
T
6
+ 1)
Il
f
((' 9
p
(0
, T
;
X
)
■
(3.2 < )
The following lemma is also due to Lemma 11 of G. di Blasio [5].
Lemma 5.
Suppose 6 > p. Then
W6-p(0, T; X) П Lp(0, T; (X, D(A))„) C C([0, T]; (X, D(A))6-1 /,,,), and the following inequality holds for u E W6,p(0, T; X) П Lp(0, T;(X,D(A))6,p) with a constant C3 indepeiident of T:
HuH
c
([0
,T
];(
X,D
(
A
))
e-
1
/pp
)
<
C
3
(
T
6
1
/p
lul
rn
9p
(0
,T
;
X
)
+
T
1
/p
^u^
L
p
(0
,T
;(
X,D
(
A
))
e,p
)
)
■
(3.28)
Inequality (3.28) follows from the one in case
T
= 1 and considering a function
u
(
Tt
)
,
0
< t <
1. in the general case.
In view of Lemma 5
I
I
V
‘
\
c
([0
,T
];(
X,D
(
A
))
e-
1
/p
,p
)
<
(3.29)
<
C
3 (
T
6
-
1
/p
\V
‘
\
,
e,p
(0
,T
;
X
)
+
T
—
1
/p
\
V
‘
\
L
p
(0
,T
;(
X,D
(
A
))
e,p
)
)
■
Inequalities (3.16), (3.27) and (3.29) yield (3.30) II V'Нс([0,T];(X,D(A))6- 1 /p,p) < CT \f IIWe,p(0,T;X), where Ct = Cз ((C2 + C2 + 1)T6 + C2) T-1 /p. Hence
HV
11
с
([0
,T
];(
X,D
(
A
))
6
+1
-
1
/p,p
)
= ||
AV
li
e
([0
,T
];(
X,D
(
A
))
6—
1
Mp
)
=
HV
'
-
f
11
с
([0
,T
];(
X,D
(
A
))
6-
1
/p,p
)
< C
T У
H
W
6,p
(0
,T
;
X
)
+
Il
f ||
c
([0
,T
];(
X,D
(
A
))
6-
1
/p,p
)
•
(3.31)
We apply (3.31) to
J
0
T
a
(
a
)[
A
2b
n
(
•
+
a
)
— A
2b
n-
1
(
•
+
a
)]
da.
Then
V
=
u
n
+1
— u
n
(c.f.
(3.11)). Let
T
satisfy (3.12):
C
2
k
2
Hl
i
(
-t,
0) [(
Op
)
-
1
/p
C
0
+ 1]
<
1
•
One has
Hu
n
+1
— u
n||
c
([0
,T
];(
X,D
(
A
))
6
+1
-
1
/p,p
)
≤ C
T
+
I
a
(
a
)[
A
2
b
n
(
•
+
a
)
—
A
2
b
n-
1
(
•
+
a
)]
da
I
a
(
a
)[
A
2
b
„
(
•
+
a
)
— A
2
b
n_
1
(
•
+
a
)]
da
W
6,p
(0
,T
;
X
)
. (3.32)
с
([0
,Т
];(
X,D
(
A
))
6-
1
/p,p
)
It is shown in [2] that the following inequality holds:
I
a
(
a
)[
A
2
b
n
(
•
+
a
)
—
A
2
u
b
n-
1
(
•
+
a
)]
da
< k
2
HaH
L
1
(
-T,
0) [(
9p
)
-
1
/p
C
0
+ 1]
Hb
n
-
W
6 p
(0
,T
;
X
)
u
n-
1
I
I
W
6,p
(0
,T
;
D
(
A
))
•
(3.33) As is easily seen
I
a
(
a
)[
A
2
b
n
(
•
+
a
)
—
A
2
u
b
n-
1
(
•
+
a
)]
da
c
([0
,T
];(
X,D
(
A
))
6-
1
/p,p
)
sup sG [0 ,T]
/ a
(
a
)[
A
2
b
n
(
s
+
a
)
— A
2
b
n-
1
(
s
+
a
)]
da
-T
(
X,D
(
A
))
6-
1
/p,p
<[ |a
(
a
)
|d
a
sup
||A
2
b
n
(
T
)
— A
2
b
n
-
1
(
T
)
H
(
X,D
(
A
))
6-
1
/pp
-T T G
[
-T,T
]
<
k
2 ||
aH
L
1
(
-T,
0)
su
P
HAu
n
(
T
)
—
A
u
n-
1
(
T
)
H
(
X,D
(
A
))
6-
1
/pp
t
G
[0
,T
]
=
k
2 ||
aH
L
1
(
-T,
0) ||
u
n
— u
n-
1
||c
([0
,T
];(
X,D
(
A
))
6
+1
-
1
/p,p
)
•
(3.34) The following inequality follows from (3.32) - (3.34):
Hu
n
+1
—
u
n||
c
([0
,T
];(
X,D
(
A
))
6
+1
-
1
/p,p
)
< C
T
k
2
HaH
L
1
(
-T,
0)
[(
9p
)
-
1
/P
C
0
+ 1]
Hb
n
-
u
n-
1||
w
6,p
(0
,T
;
D
(
A
))
+
k
2 ||
aH
L
1
(
-T,
0) ll
u
n
— u
n-
1
||
c
([0
,T
];(
X,D
(
A
))
6
+1
-
1
/p,p
)
•
Summing both sides from
n
= 1 tо
m
one gets
m
52
u
n
+1
- u
n
\\
c
([0
,T
];(
X,D
(
A
))
9
+1
_
1
/p,p
)
n
=1
m
< C
T
k
2
\а\
£
1
(
-т,
0)
[(
9p
) 1
/p
C
0
+ 1
]
52
Wu
n
— u
n-
1
W
^
9'p
(0
,T
;
D
(
a
))
n
=1
m
+
k
2||
a||
L
1
(
-T,
0)
52
W
u
n —
u
n-
1
\
c
([0
,T
];(
x,d
(
a
))
9
+1
-
1
/p,p
)
• ^-^
n
=1
Substituting m
52
Wu
n
— u
n-
1
\
c
([0
T
];(
X,D
(
A
))
9
+1
-
1
/p,p
)
n
=1
m
<
52
Wu
n
+1
— u
n
W
C
([0
T
];(
X,D
(
A
))
9
+1
-
1
/p,p
)
+
Wu
1
— u
0
W
C
([0
,T
];(
X,D
(
A
))
9
+1
-
1
/p,p
)
n
=1
in the last side of (3.35) one gets m
52
Wu
n
+1
— u
n
W
c
([0
,T
];(
X,D
(
A
))
9
+1
-
1
/p,p
)
n
=1
m
< C
T
k
2
Ца^
ь
1
(
-T,
0) [
(
ep)
-
1
/p
C
0
+1] 5^1
u
n
— u
n-
1
U
rn
9-p
(0
,T
;
D
(
A
))
n
=1
m
+
k
2 ||
a||
L
i
(
-
t,
0)
52
Wu
n
+1
— u
n-
W
c
([0
T
];(
X,D
(
A
))
9
+1
-
1
/p,p
)
n
=1
+
k
2 ||
а
Ц
L
1
(
-
t,
0) ||
u
1
— u
0
W
C
([0
,T
];(
X,D
(
A
))
9
+1
-
1
/p,p
)
•
This implies m
(1
— k
2||
a||
L
1
(
-T,
0))
52
Wu
n
+1
— u
n
W
C
([0
T
];(
X,D
(
A
))
9
+1
-
1
/p,p
)
n
=1
m
< C
T
k
2 ||
а
Ц
L
1
(
-T,
0) [
(
ep
)
-
1
/p
C
;
+1]
52
w
u
n
— u
n-
1
\
m
9-p
(0
,T
;
D
(
A
))
n
=1
+
k
2
ЦаЦ
ь
1
(
-T,
0)
Wu
1
— u
0
\
c
([0
,T
];(
X,D
(
A
))
9
+1
-
1
/p,p
)
•
(3.36)
Letting
m ^
to
in (3.36) one obtains in view of (3.13)
∞
(1
— k
2
ЦаЦ
ь
1
(
-T,
0))
52
Wu
n
+1
— u
n
\
c
([0
,T
];(
X,D
(
A
))
9
+1
-
1
/p,p
)
n
=1
∞
< C
T
k
2
цац
ь
1
(
-T,
0) [
(
ep)
-
1
/p
C
0
+1] £
Uu
n
— u
n-
1
W
m
9-p
(0
,T
;
D
(
A
))
n
=1
+
k
2||
a||
L
1
(
-T,
0)
Wu
1
— u
0||
c
([0
,T
];(
X,D
(
a
))
9
+1
-
1
/p,p
)
< №•
(3.37)
Let
T
satisfy
k
2||
а
|Д
i
(
-T,
0
)
<
1 besides
T < r
and (3.12). Then by virtue of (3.37) and (3.13) one obtains
∞
^2
u
n
+1
- u
n
^
C
([0
,T
];(
X,D
(
A
))
6
+i
_
i
^p
)
< TO.
n
=1
Hence
{u
n
}
is convergent in
C
([0
,T
]; (
X,D
(
A
))
6
+1
_
1
/p,p
). Si nee
u
n
^ u
in
W
6,p
(0
, T
;
D
(
A
)). one concludes
u G C
([0
, T
]; (
X,D
(
A
))
6
+1
_
1
/p,p
) and
U
n
^ u
in
W
6,p
(0
,T
;
D
(
A
))
О C
([0
,T
];(
X,D
(
A
))
6
+1
-
1
/pp
)
.
Let
T
0 satisfy
0
< T
0
< r, C
2
k
2
|a|
L
1
(
-T
0
,
0)
[(
Op
)
-
1
/p
C
0
+ 1]
<
1
, k
2
|a|
L
i
(
-
t
0
,
0)
<
1
.
Then, by the result just proved one has
u G W
6,p
(0
, T
;
D
(
A
))
О
C([0,T0]; (X, D(A))6+1 -1 /p,p)'. Hence b G w6,p(-r, T; D(A)) О C([-r, TД (X, D(A))6+1 -1 /pp). Suppose T) < T. Then bl[t0-r,T0] G W6,p(TD - r,T0; D(A)) О C([T0 - r,T0]; (X,D(A))6+1 -1 /pp), and u satisfies d u dt
(
t
) =
Au
(
t
) +
A
1
u
(
t - r
) +
j
a
(
s
)
A
2
u
(
t
+
s
)
ds
+
f
(
t
)
, T
0
< t < T,
u
(
S
) =
b |
[
t
0
-r,T
0
]
(
s
)
, T
0
- r < s < T
0
.
Therefore, by virtue of the result already proved u G W6,p(0,T; D(A)) О C([0, min{2T0,T}]; (X,D(A))6+1 -1 /p,p). Continuing this process we can complete the proof of Theorem 5. Next, we consider the case where the following assumption is satisfied:
Г
ф
1
g
W
1+
6,p
(
-r,
0;
D
(
A
))
О C
1
([
-r,
0]; (
X,D
(
A
))
6
+1
-
1
/p,p
)
,
(11-4)
j
f G W
6
+1
’p
(0
,T
;
X
)
О C
([0
,T
]; (
X,D
(
A
))
6
+1
-
1
/p,p
)
О C
1
([0
,T
]; (
X,D
(
A
))
6-
1
/p,p
)
,
[
Ф
1
(0) =
Aф
1
(0) +
A
1
ф
1
(
-r
) +
J-*
3
r
a
(
а
)
A
2
ф
1
(
а
)
da
+
f
(0)
.
Theorem 6. If assumptions (II-2) and (II-4) are satisfied, then the solution u of (0.1) satisfies u g W1+6,p(0,T; D(A)) О W2+6’p(0,T; X) О C 1([0,T]; (X,D(A))6+1 -1 /p,p), u" G C([0,T];(X,D(A))6-1 /p). (3.38) Proof. If hypotheses (H-2) and (П-4) are satisfied, then (H-l) and (H-3) are also satisfied. In view of Theorem 2 and Theorem 5 it suffices to show u‘ G C([0,T];(X,D(A))6+1 -1 /p). Since (II-4) is satisfied, (II-3) is satisfied by ф1, f ‘ in pl ace of ф 1, f. Therefore in view of Theorem 5 there exists a solution v of the following problem d v dt
(
t
) =
Av
(
t
) +
A
1
v
(
t — r
) +
j a
(
s
)
A
2
v
(
t
+
s
)
ds
+
f'
(
t
)
,
v
(
s
) =
Ф
1
(
s
)
, —r < s <
0 satisfying
v E W
6p
(0
,T
;
D
(
A
))
П C
([0
,T
]; (
X,D
(
A
))
e
+i
-
1
/pp
)
, dv/dt E W
(0
,T
;
X
)
П C
([0
,T
]; (
X, D
(
A
))
e-
1
/p
)
.
Since
u
(
t
) =
ф
1(0) + У
v
(
т
)
dт
(c.f. Proof of Theorem 2).
u
‘
=
v E C
([0
,T
];(
X, D
(
A
))
e
+i
-
1
/pp
)
.
□ 4. Solution Semigroup: Case 0 > 1 /p
In this section we assume that hypotheses (II-2) and (П-3) are satisfied. Let
Z
=
W
6p
(
—r,
0;
D
(
A
))
П C
([
—r,
0]; (
X, D
(
A
))
e
+i
-
1
/p,p
)
.
For
ф
1
E Z
let
u
be the solution of (0.1) with
f
(
t
) = 0:
d u dt
(
t
) =
Au
(
t
) +
A
1
u
(
t — r
) +
j a
(
s
)
A
2
u
(
t
+
s
)
ds,
0
< t < ro,
(4Л)
u
(
s
) =
ф
1(
s
)
, —r < s <
0
.
In view of Theorem 5
u
satisfies
u e W
»'p
(0
,T
;
D
(
A
))
П C
([0
, T
]; (
X, D
(
A
))
e
+1
-
1
/p,p
)
, u
‘
e W
6,p
(0
, T
;
X
)
П C
([0
, T
]; (
X, D
(
A
))
e-
1
/p,p
)
.
Therefore
b E W
6,p
(
—r, ro
;
D
(
A
))
П C
([
—r, ro
); (
X,D
(
A
))
6
+1
-
1
/p,p
). wlrere
u E W
e'p
(
—r, ro
;
D
(
A
)) means
u E W
6p
(
—r,T
;
D
(
A
))
VT >
0. Tins implies b
t
E Z
for
t >
0. Therefore if we set
S
(
t
)
ф
1
=
b
t
, t >
0
,
S
(
t
) nirips
Z
to
Z.
Let b lie the solution of (4.1). v lie the solution of (4.1) with the initial function bT and w(t) = b(t + т) fc>r т > 0, t > 0. Then d v dt
(
t
)=
Av
(
t
) +
A
1
v
(
t — r
) + У
a
(
s
)
v
(
t
+
s
)
ds,
0
< t< ro,
v(s) = b(т + s), —r < s < 0, dd 0
—w
(
t
) = n-
u
(
t
+
т
) =
Au( t
+
т
) +
A
1
u
(
t
+
т — r
) +
a
(
s
)
u
(
t
+
т
+
s
)
ds
^dt ^dt
r
=
Aw
(
t
) +
A
1
w
(
t — r
) + У
a
(
s
)
w
(
t
+
s
)
ds,
0
< t < ro,
w
(
s
) = b(
т
+
s
)
, —r < s <
0
.
Therefore v = w. arid lienee vt = wt. On the other hand vt = S (t) bт = S (t) S (т) ф i, wt (s) = w (t + s) = b( t + s + т) = bt+т (s) = (S (t + т) ф i)( s). Thus
S
(
t
)
S
(
т
)
ф
i =
S
(
t
+
т
)
ф
i
.
It is easy to see that the mapping [0
,T
]
Э t ^
b
t
E C
([
—r,
0]; (
X,D
(
A
))
e
+1
-
1
/p,p
) is continuous. The continuity of [0
, T
]
Э t ^
b
t
E W
e,p
(
—r,
0;
D
(
A
)) is shown in the following lemma.
Lemma 6.
For v E We,p
(
—r,T
;
D
(
A
))
the mapping
[0
, T
]
Э t ^ vt E We,p
(
—r,
0;
D
(
A
))
is continuous.
Proof.
The lemma is proved by the following step:
(i) For
w E W
1
,p
(
—r,T
;
D
(
A
)) lim
T^t
I
w - w
t
^
w
«.p
(
-r,
0;
D
(
a
))
= 0.
(ii) For
v E W
ep
(
—r,T
;
D
(
A
)),
w E W
1
,p
(
—r,T
;
D
(
A
)) such that ||
v — w|
w
e.p
(
-r,T
;
D
(
A
))
< e
one has
|
v
T
— v
t
^
w
9.p
(
-r,
0;
D
(
A
))
< |
w
T
— w
t
I
I
w
9.p
(
-r,
0;
D
(
A
))
+
|
v
T
—
w
T
I
I
w
e.p
(
-r,
0;
D
(
A
))
+ ||
v
t
—
w
t||w
9,p
(
-r,
0;
D
(
A
))
< |
w
T
—
w
t
I
I
w
9.p
(
-r,
0;
D
(
A
)) +2 ||
v —
w
|
w
«.p
(
-r,T
;
D
(
A
))
< |
w
T
— w
t
^
w
e.p
(
-r,
0;
D
(
A
))
+ 2
e
.
□
Hence the mapping [0
, T
]
Э t ^ S
(
t
)
ф
1 = b
t
E Z
is continuous. Thus it has been shown that
{S
(
t
)
, t >
0
}
is a,
C
o-seriiigroup.
The following result is an analog to Theorem 4.4 of E. Sinestrari [4]:
Theorem 7.
The infinitesimal generator of S
(
t
)
is given by
D
(Л) = {
ф
1
E W
1+
e,p
(
—r,
0;
D
(
A
))
П C
1 ([
—r,
0]; (
X, D
(
A
))
e
+1
-
1
/p,p
);
I a
(
a
)
A
2
ф
1
(
a
)
da
}
,
ф1(0) = Aф 1(0) + A1 ф 1(—r) + л ф 1 = ф1 .
Proof.
We show
(i)
S
(
t
)
D
(Л)
c D
(Л).
(ii)
D
(Л) is deiise in
Z
=
W
e,p
(
—r,
0;
D
(
A
))
И C
([
—r,
0]; (
X, D
(
A
))
e
+1
-
1
/p,p
)•
(hi) Л
c
iiihriitesiriial generator of
{S
(
t
)
}.
(iv) Л :
D
(Л)
c W
e’p
(
—r,
0;
D
(
A
))
^ W
e'p
(
—r,
0;
D
(
A
)) is closed.
(i) Let
ф
1
E D
(Л) and
b
be the solution of (4.1). Then in view of Theorem 6 arid Its proof
b
(0) =
ф
1(0) ar id
b
‘
(0) =
ф
1
(0). He rice b
E W
1+
e,p
(
—r, ж
;
D
(
A
))
И C
1([
—r, ж
]; (
X,D
(
A
))
e
+1
-
1
/p,p
)• Hence
b
t
e
W
1+
e,p
(
—r,
0;
D
(
A
))
И C
1([
—r,
0]; (
X,D
(
A
))
e
+1
-
1
/p,p
)
.
For
t >
0
(b
t
)
‘
(0) = lim
u
t
f
s
)
s→
0
- s
ub
t
(0)
ub
(
t
+
s
)
— ub
(
t
)
u
(
t
+
s
)
— u
(
t
)
----= lim ------------ = lim ------------
s→-
0
s
s→-
0
s
=
U
(
t
) =
Au
(
t
) +
A
1
b(
t — r
) + /
a
(
s
)
A
2
b(
t
+
s
)
ds
-r
=
Au
t
(0) +
A
1
b
t
(
—r
) + /
a
(
s
)
A
2
b
t
(
s
)
ds.
-r
Hence b
t
E D
(A).
(ii) Let
ф
1
E Z
and
b
t
=
S
(
t
)
ф
1.
Set
ф
е
=
0
b
t
dt. ф
е
(
s
) =
0
b
t
(
s
)
dt
=
0
b(t
+
s
)
dt.
Therefore Hence
V
e
(
s
)
= d (s) = ddbt + s)dt =/'b‘(t + s)dt ds 0 ds 0 0
= b(
€
+
s
)
—
b(
s
) =
b(€
+
s
)
— ф
1
(
s
) =
b
e
(
s
)
— ф
1
(
s
)
, —r < s <
0
.
(4.2)
ф
£
=
b
E
— ф
1
E W
6,p
(
—r,
0;
D
(
A
))
П C
([
—r,
0]; (
X, D
(
A
))
6
+1
-
1
/p,p
)
.
Ф
,
E W
6+1 -p
(
—r,
0;
D
(
A
))
П C
1
([
—r,
0]; (
X, D
(
A
))
6
+1
-
1
/
„)
.
By virtue of (4.2)
Aф
€
(0) +
A
1
ф
£
(
—r
) +
-
a
(
а
)
A
2
ф
€
(
а
)
da
=
A
Г
b(t
)
dt
+
A
1
Г b(
t — r
)
dt
+
Г
a
(
а
)
A
2
Г b(
t
+
а
)
dtda
0 0
-r
0
=
j ^A
b(
t
) +
A
1
b(t — r
) +
j a
(
а
)
A
2
b(t
+
а
)
da^ dt
=
( b‘
(
t
)
dt
= b(
€
)
—
b(0) =
b
£
(0)
— ф
1
(0) =
ф
Е
(0)
.
Therefore
ф
£
E D
(A). Since [0
, то
)
Э t — u
t
E Z
is continuous,
e
∥
ϵ
-
1
φ
ϵ
-
ф
1
^
z
=
1
[£
(
b1
€ Jo
t - e
ф
1
)
dt
< € I
I
Ut — ф
i
I
z
dt ——
0 as
€ ——
0
.
Z
(iii) Let
ф
1
E D
(Л) and
u
be the solution to (4.1). As was noted in the proof of (i) one has
b E W
1+
6,p
(
—r, то
;
D
(
A
))
П C
1 ([
—r, то
]; (
X, D
(
A
))
6
+1
-
1
/p,p
). Hence
b
‘
E W
6-p
(
—r, то
;
D
(
A
))
П C
([
—r, то
]; (
X, D
(
A
))
6
+1
-
1
/„.,,
)
.
Therefore j b (ta + •) da — b
< [ \\b
(
ta
+
•
) 10
j b'
(
ta
+
•
)
da
W
e,p
(
-r,
0;
D
(
A
))
=
j
(b
'
(
ta
+
•
)
— b
)
d
—
b
'
^
W
9,p
(
-r,
0;
D
(
A
))
da
^
0
,
-u σ
W
e-p
(
-r,
0;
D
(
A
))
< L Hence
lib
'
(
ta
+
•
)
—
C
([
-r,
0];(
X,D
(
A
))
6
+1
_
1 M
p
)
b
'
I
C
([
-r,
0];(
X,D
(
A
))
6
+i
_
i
/p
)
da
^
0
•
S
(
t
)
ф
1
— ф
1
= b
t
- t
b0 b(
t
+
•
)
—
b(
•
) 1 Г1
д
~ =
—t—
=
1
/0
dau
(
ta
+
•
’
da
=
j b'
(
ta
+
•
)
da ^
b
'
(
•
) = Л
ф
1
in
Z.
(in) Let
ф
1
n
G D
(Л)
, ф
1
n
^ ф
1
, ф
1
n
= Л
ф
1
n
^ Д
in
Z.
Then
ф
1
= Д G Z.
Hence
ф
1
G W
1+
»p
(
—r,
0;
D
(
A
))
П C
1 ([
—r,
0]; (
X, D
(
A
))
,
+1
-
1
/
„)
.
Since
ф
1
n
^ ф
1 iii
C
([
—r,
0]; (
X, D
(
A
))
6
+1
_
1
/p,p
). one lias
Аф
1
n
(0)
^ Aф
1(0).
Аф 1 n(—r) ^ Аф 1(—r)• J-r a(a)A2ф 1 n(a)da ^ -rr a(a)A2ф 1 (a)da ii 1 (X, D(A))e-1 /p,p. One also has ф n(0) ^ Д(0) = ф1(0) in (X,D(A))6+1 - 1 /pp Therefore, from ф1 n (0) = Aф 1 n(0) + A1 ф 1 n(—r) + I a(a)A2ф 1 n(a)da it follows that
ф
1(0) =
A
Ф
1(0) +
A
1
ф
1(
—r
)+ /
-r
a
(
a
)
A
2
ф
1(
a
)
da.
Therefore
ф
1
G D
(Л) and Л
ф
1 =
Д.
□
5. Remark on Hypothesis (П-2)
Let
A
be the realization in
U
*
(O)
,
1
< p <
to,
of a strongly elliptic linear partial differential operator of second order with the Dirichlet boundary condition, where О is a bounded domain in R
n.
Let
A
i
,i
= 1
,
2
,
be linear partial differential operators of second order in О Assume that tlre coefficients of
A,A
i
,i
= 1
,
2
,
and the boundary
д
О of О are sufficiently smooth. Then
D
(
A
) =
W
2
,p
(О)
П W
01
,p
(O). Assume that
A
has a bounded inverse. Suppose 1
/p < 6 <
3
/
(2
p
). Then 0
<
2
6 —
2
/p <
1
/p
. Hence by virtue of the results of R. Seeley [6] (also c.f. H. Triebel [7, Theorem 4.3.3]).
(
L
p
(O)
, D
(
A
))
e-
1
/p,p
= (
L
p
(O)
, W
2
’p
(О)
П W
1
,p
(O))
8-
1
/p,p
= =
Bp^
2
/p
(O) =
W
2
8
-
2
/p,p
(O)
•
(5.1) Since A-1 G L(Lp(Q), W2,p(Q) П W01 ,p(Q)) П L(W1 ’p(Q), W3’p(Q) Fl W01 ,p(Q)), one has
A
-
1
G
L
(W
2
6-
2
/p’p
(Q)
, W
2+2
6-
2
/p’p
(Q)
П W
01
,p
(Q))
.
(5.2)
Let
f G
(
L
p
(Q)
,D
(
A
))
6-
1
/p,p
. In view of (5.1) and (5.2)
A
-
1
f G W
2+2
6-
2
/p’p
(Q)
F
l
W
0
1
’p
(Q). Hence
AA
-
1
f G W
2
6-
2
/p’p
(Q) = (
L
p
(Q)
, D
(
A
))
6-
1
/pp
, i
= 1
,
2
.
Therefore
AA
-
1
G
L((
L
p
(Q)
, D
(
A
))
6-
1
/pp
,
(
L
p
(Q)
,D
(
A
))
6-
1
/p,p
)
, i
= 1
,
2
.
(5.3)
Next, consider the case of the Neumann boundary condition. In this case D(A) = {u G W2'p(Q); du/dn = 0 on dQ} , where du/dn is the outer conormal derivative with respect to A. Suppose 1 /p < 9 < 3/(2p) + 1 /2, 9 = 1 /2+ 1 /p. Then, again by virtue of the results of R. Seeley [6] or H. Triebel [7] (L (Q) ,D (A)) e-1 /„, = B2^-1 /p) (Q) = W2(6-1 /p),p (Q), and (5.3) follows as in the case of the Dirichlet boundary condition.
Список литературы Regularity results and solution semigroups for retarded functional differential equations
- Di Blasio G., Lorenzi A. Identification Problems for Integro-Differential Delay Equations. Differential Integral Equations, 2003, vol. 16, no. 11, pp. 1385-1408.
- Favini A., Tanabe H. Identification Problems for Integrodifferential Equations with Delay: an Improvement of the Results from G. Di Blasio and A. Lorenzi. Appear in Funkcialaj Ekvacioj.
- Di Blasio G., Kunisch K., Sinestrari E. L2-regularity for Parabolic Partial Integrodifferential Equations with Delay in the Highest-Order Derivatives. Journal of Mathematical Analysis and Applications, 1984, vol. 102, issue 1, pp. 38-57 DOI: 10.1016/0022-247X(84)90200-2
- Sinestrari E. On a Class of Retarded Partial Differential Equations. Mathematische Zeitschrift, 1984, vol. 186, pp. 223-246.
- Di Blasio G. Linear Parabolic Evolution Equations in Lp-Spaces. Annali di Matematica Pura ed Applicata (IV), 1984, vol. 138, issue 1, pp. 55-104 DOI: 10.1007/BF01762539
- Seeley R. Interpolation in Lp with Boundary Conditions. Studia Matematica, 1972, vol. 44, pp. 47-60.
- Triebel H. Interpolation Theory, Function Spaces, Differential Operators. Amsterdam, N.Y., Oxford, North-Holland, 1978.