Relativistic nonlinear axion magnetohydrodynamics
Автор: Alpin T.Yu., Balakin A.B., Vorohov A.V.
Журнал: Пространство, время и фундаментальные взаимодействия @stfi
Рубрика: Гравитация, космология и фундаментальные поля
Статья в выпуске: 2 (39), 2022 года.
Бесплатный доступ
The new nonlinear axionically extended version of the general relativistic magnetohydrodynamics is formulated. The self-consistent formalism of this theory is based on the introduction into the Lagrangian of the new unified scalar invariant, which is quadratic in the Maxwell tensor, and contains two periodic functions of the pseudoscalar (axion) field. The constructed unified invariant and the elaborated nonlinear theory as a whole, are invariant with respect to two symmetries: first, the discrete symmetry associated with the properties of the axion field; second, the Jackson’s SO(2) type symmetry intrinsic for the electromagnetism. The subsystem of the master equations, which describes the velocity four-vector of the hydrodynamic flow, is constructed in the framework of Eckart’s theory of viscous heat-conducting fluid. The axionically extended nonlinear Faraday, Gauss and Ampere equations are supplemented by the ansatz about the large electric conductivity of the medium, which is usually associated with vanishing of the electric field. We have suggested two essentially new nonlinear models, in the framework of which the anomalous electric conductivity is being compensated by the appropriate behavior of the finite pseudoscalar (axion) field, providing the electric field in the magnetohydrodynamic flow to be finite (either to be proportional to the magnetic field, or to the angular velocity of the medium rotation).
Axion, nonlinear electrodynamics, magnetohydrodynamic flow
Короткий адрес: https://sciup.org/142235698
IDR: 142235698 | DOI: 10.17238/issn2226-8812.2022.2.04-17
Список литературы Relativistic nonlinear axion magnetohydrodynamics
- Lichnerowicz A. Relativistic hydrodynamics and magnetohydrodynamics: Lectures on the existence of solutions. Publisher: W.A. Benjamin, Ney York, USA,1967.
- Anile A.M. Relativistic luids and magneto-uids with applications in astrophysics and plasma physics. Cambridge University Press, Cambridge, UK, 1990.
- Biskamp D. Nonlinear magnetohydrodynamics. Cambridge University Press, Cambridge, UK, 1993.
- Bekenstein J.D., Oron A. Extended Kelvin theorem in relativistic magnetohydrodynamics. Found. Phys. 2001, 31, pp. 895-907.
- Boyarsky A., Frohlich J., Ruchayskiy O. Magnetohydrodynamics of Chiral Relativistic Fluids. Phys. Rev. D, 2015, 92, 043004.
- Roy V., Pu S., Rezzolla L., Rischke D. Analytic Bjorken low in one-dimensional relativistic magnetohydro-dynamics. Phys. Lett. B, 2015, 750, 45.
- Giovannini M., Anomalous magnetohydrodynamics in the extreme relativistic domain. Phys. Rev. D, 2016, 94, 081301.
- Hernandez J., Kovtun P. Relativistic magnetohydrodynamics. JHEP, 2017, 1705, 001.
- Kawazura Y. Modi cation of magnetohydrodynamic waves by the relativistic Hall elect. Phys. Rev. E, 2017, 96, 013207.
- Dommes V.A., Gusakov M.E., Shternin P.S. Dissipative relativistic magnetohydrodynamics of a multicom-ponent mixture and its application to neutron stars. Phys. Rev. D, 2020, 101, 103020.
- Most E.R., Noronha J. Dissipative magnetohydrodynamics for non-resistive relativistic plasmas. Phys. Rev. D, 2021, 104, 103028.
- Balakin A.B., Muharlyamov R.K., Zayats A.E. Electromagnetic waves in an axion-active relativistic plasma non-minimally coupled to gravity. EPJC, 2013, 73, 2647.
- Balakin A.B., Muharlyamov R.K., Zayats A.E. Nonminimal Einstein-Maxwell-Vlasov-axion model. Class. Quantum Grav., 2014, 31, 025005.
- Balakin A.B., Muharlyamov R.K., Zayats A.E. Axion-induced oscillations of cooperative electric leld in a cosmic magneto-active plasma. EPJD, 2014, 68, 159.
- Balakin A.B., Groshev D.E. Polarization and strati cation of axionically active plasma in a dyon magneto-sphere. Phys. Rev. D, 2019, 99, 023006.
- Balakin A.B., Groshev D.E. Magnetoelectrostatics of axionically active systems: Induced eld restructuring in magnetic stars. Phys. Rev. D, 2020, 101, 023009.
- Peccei R.D., Quinn H.R. CP conservation in the presence of instantons. Phys. Rev. Lett., 1977, 38, pp. 1440-1443.
- Wei-Tou N. Equivalence principles and electromagnetism. Phys. Rev. Lett., 1977, 38, pp. 301-304.
- Weinberg S. A new light boson? Phys. Rev. Lett., 1978, 40, pp. 223-226.
- Wilczek F. Problem of strong P and T invariance in the presence of instantons. Phys. Rev. Lett., 1978, 40, pp. 279-282.
- Sikivie P. Experimental tests of the "invisible" axion. Phys. Rev. Lett., 1983, 51, pp. 1415-1417.
- Preskill J., Wise M.B., Wilczek F. Cosmology of the invisible axion. Phys. Lett. B, 1983, 120, 127.
- Abbott L.F., Sikivie P. A cosmological bound on the invisible axion. Phys. Lett. B, 1983, 120, 133.
- Dine M., Fischler W. The not so harmless axion. Phys.Lett. B, 1983, 120, 137.
- Wilczek F. Two applications of axion electrodynamics. Phys. Rev. Lett., 1987, 58, pp. 1799 1802.
- Jackson J.D. Classical Electrodynamics. John Wiley and Sons, USA, 1999.
- Balakin A.B., Galimova A.A. Towards nonlinear axion-dilaton electrodynamics: How can axionic dark matter mimic dilaton-photon interactions? Phys. Rev. D, 2021, 104, 044059.
- Balakin A.B., Bochkarev V.V., Nizamieva A.F. Nonlinear axion electrodynamics: Axionically induced electricares in the early magnetized universe. Symmetry, 2021, 13, 2038.
- Eckart C. The thermodynamics of irreversible processes. III. Relativistic theory of the simple uid. Phys. Rev., 1940, 58, 919-924.
- Burgess C.P. Introduction to electiveeld theory. Ann. Rev. Nucl. Part. Sci., 2007, 57, 329.
- Israel W., Stewart J.M. Transient relativistic thermodynamics and kinetic theory. Ann. Phys., 1979, 118, pp. 341-372.