Seasonal and annual variability of Svalbard cloud cover

Автор: Zotova Ekaterina, Schmitt Amelie, Ivanov Boris, Svyaschennikov Pavel

Журнал: Российская Арктика @russian-arctic

Статья в выпуске: 18, 2022 года.

Бесплатный доступ

This study is focused on the seasonal and inter-annual variability of total cloud cover in the Svalbard and a comparative analysis of data obtained from three meteorological stations with the ERA5 reanalysis data. The results show that the amount of total cloud cover increases in summer, but the reanalysis data do not agree with the observations. Reanalysis overestimates the results compare to observations for cloudy sky conditions and the inconsistency decreases in summer. For clear sky cases it is an underestimation of reanalysis for all seasons except summer. A comparison of inter-annual cloud cover values also show inconsistency between the observations and reanalysis. The overestimation of cloudy sky conditions and the underestimation of clear sky conditions are revealed for reanalysis. The latitudinal dependence of the amount of total cloud cover is not revealed.

Еще

Arctic, cloud cover, reanalysis, svalbard

Короткий адрес: https://sciup.org/170196175

IDR: 170196175   |   DOI: 10.24412/2658-42552022-3-30-43

Список литературы Seasonal and annual variability of Svalbard cloud cover

  • Meier, W.N., Hovelsrud, G.K., van Oort, B.E.H., Key, J.R., Kovacs, K.M., Michel, C., Haas, C., Granskog, M.A., Gerland, S., Perovich, D.K., Makshtas, A. and Reist, J.D. (2014) Arctic sea ice in transformation: a review of recent observed changes and impacts on biology and human activity. Reviews of Geophysics, 52(3), 185- 217.
  • Francis, J. A., Vavrus, S. J. & Cohen, J. (2017) Amplified Arctic warming and mid-latitude weather: new perspectives on emerging connections. WIREs Clim. Chang. 8, e474.
  • Fyfe, J. C., K. von Salzen, N. P. Gillett, V. K. Arora, G. M. Flato, and J. R. McConnell (2013), One hundred years of Arctic surface temperature variation due to anthropogenic influence, Sci. Rep., 3, 2645.
  • Overland, J. E., and M. C. Serreze (2012), Advances in Arctic atmospheric research, in Arctic Climate Change: The ACSYS Decade and Beyond, edited by P. Lemke and H.-W. Jacobi, pp. 11- 26.
  • Serreze, M. C., A. P. Barrett, and J. J. Cassano (2011), Circulation and surface controls on the lower tropospheric air temperature field of the Arctic, J. Geophys. Res., 116, D07104.
  • Park, D.-S. R., S. Lee, and S. B. Feldstein (2015), Attribution of the recent winter sea ice decline over the Atlantic sector of the arctic ocean, J. Clim., 28(10), 4027- 4033.
  • Isaksen, K., 0. Nordli, E. J. F0rland,E.Eupikasza, S. Eastwood, andT. Niedzwiedz(2016), Recent warmingon Spitsbergen—Influence of atmospheric circulation and sea ice cover, J. Geophys. Res. Atmos., 121,11,913-11,931.
  • Kay, J.E. and L'Ecuyer, T. (2013) Observational constraints on Arctic Ocean clouds and radiative fluxes during the early 21st century. Journal of Geophysical Research: Atmospheres, 118(13), 7219- 7236.
  • Curry, J., Rossow, W., Randall, D. and Schramm, J. (1996) Overview of arctic cloud and radiation characteristics. Journal of Climate, 9, no. 8, pp. 1731-1764.
  • Liu, Y., Key, J. R., Frey, R. A., Ackerman, S. A. and Menzel, W. P. (2004) Nighttime polar cloud detection with MODIS. Remote Sensing of Environment, 92, no. 2, pp. 181-194.
  • Chernokulsky, A.,Mokhov, I.,(2012) Climatology of Total Cloudiness in the Arctic: An Intercomparison of Observations and Reanalyses.Advances in Meteorology, 2012, 1-15.
  • Chernokulsky, A., Esau, I. (2019) Cloud cover and cloud types in the Eurasian Arctic in 19362012. International Journal of Climatology, 39(15), 5771-5790.
  • Graversen, R.G., Langen, P.L. and Mauritsen, T. (2014) Polar amplification in CCSM4: contributions from the lapse rate and surface albedo feedbacks. Journal of Climate, 27(12), 4433- 4450.
  • Makshtas, A., Andreas, E.L., Svyashchennikov, P.N. andTimachev, V.F. (1999) Accounting for clouds in sea ice models. Atmospheric Research, 52, 77-113.
  • Eastman, R., Warren, G. S. (2010) Arctic Cloud Changes from Surface and Satellite Observations. Journal of Climate, 23(15), 4233-4242.
  • Maturilli, M., Ebell, K. (2018) Twenty-five years of cloud base height measurements by ceilometer in Ny-Álesund, Svalbard. Earth System Science Data, 10, 1451-1456.
  • Demchev, D., Kulakov, M., Makshtas, A., Makhotina, I., Filchuk, K., Frolov, I. (2020) Verification of the data from ERA-Interim and ERA5 reanalyseson surface air temperature in Arctic. Meteorology and Hydrology, 11, 36-45. [in Russian]
  • Naud, C. M., Booth, J. F., & Del Genio, A. D. (2014). Evaluation of ERA-Interim and MERRA Cloudiness in the Southern Ocean. Journal of Climate, 27(5), 2109-2124.
  • Walsh, J. E., & Chapman, W. L. (1998). Arctic Cloud-Radiation-Temperature Associations in Observational Data and Atmospheric Reanalyses, Journal of Climate, 11(11), 3030-3045.
  • Osuch, M., Wawrzyniak, T. (2017). Variations and changes in snow depth at meteorological stations Barentsburg and Hornsund (Spitsbergen). Annals of Glaciology, 58(75pt1), 11-20.
  • Wawrzyniak, T. and Osuch, M. (2020): A 40-year High Arctic climatological dataset of the Polish Polar Station Hornsund (SW Spitsbergen, Svalbard), Earth Syst. Sci. Data, 12, 805-815.
  • Wawrzyniak, T; Osuch, M (2019): A consistent High Arctic climatological dataset (1979-2018) of the Polish Polar Station Hornsund (SW Spitsbergen, Svalbard).
  • Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz Sabater, J., et al. (2020). The ERA5 global reanalysis, Quarterly Journal of the Royal Meteorological Society, 146, 1999- 2049.
  • Montgomery, D. C., Peck, E. A., Vining, G. G. (2021) Introduction to linear regression analysis, sixth edition, 24-25.
Еще
Статья научная