Sequential application of the hierarchy analysis method and associative training of a neural network in examination problems

Бесплатный доступ

We propose development of examination methodology based on a sequential application of the MAI method (i.e., the hierarchy analysis method) and associative training of neural networks. The proposed method is an alternative to the usual methods to solve a direct examination problem. We present a methodological approach to the examination problem. The approach allows to save information about all objects and consider their indicators in total. Therefore, there is the soft maximum principle (softmax), based on the model of expert evaluations mixing. This approach allows different interpretations of the examination results, which save quality unchanged overall picture of the examination object indicators ratio, and to get more reliable examination results, especially in cases where the objects characteristics are very different.

Еще

Hierarchy analysis method, self-organizing neural networks, expert evaluations mixing

Короткий адрес: https://sciup.org/147159435

IDR: 147159435   |   DOI: 10.14529/mmp170312

Список литературы Sequential application of the hierarchy analysis method and associative training of a neural network in examination problems

  • Саати, Т. Принятие решений: Метод анализа иерархий/Т. Саати. -М.: Радио и связь, 1993. -278 с.
  • Хайкин, С. Нейронные сети: полный курс/С. Хайкин. -М.; СПб.; Киев: Вильямс, 2006. -1104 с.
  • Бухарин, С.В. Кластерно-иерархические методы экспертизы экономических объектов/С.В. Бухарин, А.В. Мельников. -Воронеж: Научная книга, 2012. -276 с.
  • Бухарин, С.В. Методы нейронных сетей в экспертизе технических средств охраны/С.В. Бухарин, С.А. Мальцев, А.В. Мельников. -Воронеж: Научная книга, 2016. -177 с.
  • Медведев, В.С. Нейронные сети. Matlab 6/В.С. Медведев, В.Г. Потемкин. -М.: ДИАЛОГ-МИФИ, 2002. -496 с.
Краткое сообщение