Современные методы лечения на основе РНК-терапии
Автор: Аминулла К.Г., Киселева Я.Ю., Шишкин А.М., Довгань Ф.Н., Кулинич Т.М., Боженко В.К.
Журнал: Вестник Российского научного центра рентгенорадиологии Минздрава России @vestnik-rncrr
Рубрика: Литературный обзор
Статья в выпуске: 4 т.24, 2024 года.
Бесплатный доступ
РНК-терапия имеет большой потенциал в лечении широкого спектра заболеваний. Она может применяться для лечения генетических заболеваний, онкологических заболеваний, инфекционных болезней и многих других патологий. В 2020 и 2021 годах во всем мире были разработаны вакцины на основе мРНК для использования в борьбе с коронавирусной болезнью (пандемией COVID-19). Вакцина Pfizer-BioNTech против COVID- 19 была первой одобренной мРНК вакциной, за которой последовала Moderna COVID-19 и другие. В области онкологии РНК-терапия предлагает возможность таргетного подхода, позволяя воздействовать на конкретные гены, участвующие в развитии опухоли. Это может помочь преодолеть проблемы, связанные с традиционными методами лечения рака, такими как химиотерапия и лучевая терапия, которые часто сопровождаются серьезными побочными эффектами. В статье проведен анализ научных исследований и разработок в области использования РНК для лечения различных заболеваний, представлены результаты научных и клинических исследований новых лекарственных препаратов на основе информационной РНК (мРНК), антисмысловых олигонуклеотидов, интерферирующей РНК (RNAi) или РНК аптамеров.
Генная терапия, рнк, матричная (информационная) рнк (мрнк), рнк- интерференция (рнки), микрорнк, противоопухолевая терапия
Короткий адрес: https://sciup.org/149147211
IDR: 149147211
Список литературы Современные методы лечения на основе РНК-терапии
- Goleij P, Babamohamadi M, Rezaee A, Sanaye PM, Tabari MAK, Sadreddini S, et al. Types of RNA therapeutics. Prog Mol Biol Transl Sci. 2024;203:41-63. doi: 10.1016/bs.pmbts.2023.12.022.
- Frankish A, Diekhans M, Ferreira AM, Johnson R, Jungreis I, Loveland J, et al. GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res. 2019 Jan 8;47(D1):D766-D773. doi: 10.1093/nar/gky955.
- Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2011 Nov 18;12(12):861-874. doi: 10.1038/nrg3074.
- Song J, Kim YK. Targeting non-coding RNAs for the treatment of retinal diseases. Mol Ther Nucleic Acids. 2021 Mar 1;24:284-293. doi: 10.1016/j.omtn.2021.02.031.
- Kim J, Hu C, Moufawad El Achkar C, Black LE, Douville J, Larson A, et al. Patient-Customized Oligonucleotide Therapy for a Rare Genetic Disease. N Engl J Med. 2019 Oct 24;381(17):1644-1652. doi: 10.1056/NEJMoa1813279.
- Zhu Y, Zhu L, Wang X, Jin H. RNA-based therapeutics: an overview and prospectus. Cell Death Dis. 2022 Jul 23;13(7):644. doi: 10.1038/s41419-022-05075-2.
- Crooke ST, Baker BF, Crooke RM, Liang XH. Antisense technology: an overview and prospectus. Nat Rev Drug Discov. 2021 Jun;20(6):427-453. doi: 10.1038/s41573-021-00162-z.
- Liang XH, Sun H, Nichols JG, Crooke ST. RNase H1-Dependent Antisense Oligonucleotides Are Robustly Active in Directing RNA Cleavage in Both the Cytoplasm and the Nucleus. Mol Ther. 2017 Sep 6;25(9):2075-2092. doi: 10.1016/j.ymthe.2017.06.002.
- Mulhbacher J, St-Pierre P, Lafontaine DA. Therapeutic applications of ribozymes and riboswitches. Curr Opin Pharmacol. 2010 Oct;10(5):551-6. doi: 10.1016/j.coph.2010.07.002.
- Desterro J, Bak-Gordon P, Carmo-Fonseca M. Targeting mRNA processing as an anticancer strategy. Nat Rev Drug Discov. 2020 Feb;19(2):112-129. doi: 10.1038/s41573-019-0042-3.
- Li D, Mastaglia FL, Fletcher S, Wilton SD. Precision Medicine through Antisense Oligonucleotide-Mediated Exon Skipping. Trends Pharmacol Sci. 2018 Nov;39(11):982-994. doi: 10.1016/j.tips.2018.09.001.
- Nakamura A, Takeda S. Exon-skipping therapy for Duchenne muscular dystrophy. Lancet. 2011 Aug 13;378(9791):546-7. doi: 10.1016/S0140-6736(11)61028-3.
- Corey DR. Nusinersen, an antisense oligonucleotide drug for spinal muscular atrophy. Nat Neurosci. 2017 Apr;20(4):497-499. doi: 10.1038/nn.4508.
- Ward AJ, Norrbom M, Chun S, Bennett CF, Rigo F. Nonsense-mediated decay as a terminating mechanism for antisense oligonucleotides. Nucleic Acids Res. 2014 May;42(9):5871-5879. doi: 10.1093/nar/gku184.
- Melton DA. Injected anti-sense RNAs specifically block messenger RNA translation in vivo. Proc Natl Acad Sci U S A. 1985 Jan;82(1):144-148. doi: 10.1073/pnas.82.1.144
- Baker BF, Lot SS, Kringel J, Cheng-Flournoy S, Villiet P, Sasmor HM, et al. Oligonucleotide-europium complex conjugate designed to cleave the 5' cap structure of the ICAM-1 transcript potentiates antisense activity in cells. Nucleic Acids Res. 1999 Mar 15;27(6):1547-1551. doi: 10.1093/nar/27.6.1547.
- Vickers TA, Wyatt JR, Burckin T, Bennett CF, Freier SM. Fully modified 2' MOE oligonucleotides redirect polyadenylation. Nucleic Acids Res. 2001 Mar 15;29(6):1293-1299. doi: 10.1093/nar/29.6.1293.
- Liang XH, Sun H, Shen W, Wang S, Yao J, Migawa MT, et al. Antisense oligonucleotides targeting translation inhibitory elements in 5' UTRs can selectively increase protein levels. Nucleic Acids Res. 2017 Sep 19;45(16):9528-9546. doi: 10.1093/nar/gkx632.
- Li Z, Rana TM. Therapeutic targeting of microRNAs: current status and future challenges. Nat Rev Drug Discov. 2014 Aug;13(8):622-638. doi: 10.1038/nrd4359.
- Choi WY, Giraldez AJ, Schier AF. Target protectors reveal dampening and balancing of Nodal agonist and antagonist by miR-430. Science. 2007 Oct 12;318(5848):271-274. doi: 10.1126/science.1147535.
- Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 2001 May 24;411(6836):494-8. doi: 10.1038/35078107.
- Kim DH, Rossi JJ. Strategies for silencing human disease using RNA interference. Nat Rev Genet. 2007 Mar;8(3):173-184. doi: 10.1038/nrg2006.
- Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998 Feb 19;391(6669):806-811. doi: 10.1038/35888.
- Caplen NJ, Parrish S, Imani F, Fire A, Morgan RA. Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems. Proc Natl Acad Sci U S A. 2001 Aug 14;98(17):9742-9747. doi: 10.1073/pnas.171251798.
- Elbashir SM, Lendeckel W, Tuschl T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev. 2001 Jan 15;15(2):188-200. doi: 10.1101/gad.862301.
- Castanotto D, Rossi JJ. The promises and pitfalls of RNA-interference-based therapeutics. Nature. 2009 Jan 22;457(7228):426-33. doi: 10.1038/nature07758.
- Wilson RC, Doudna JA. Molecular mechanisms of RNA interference. Annu Rev Biophys. 2013;42:217-239. doi: 10.1146/annurev-biophys-083012-130404.
- Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004 Jan 23;116(2):281-297. doi: 10.1016/s0092-8674(04)00045-5.
- Medley JC, Panzade G, Zinovyeva AY. microRNA strand selection: Unwinding the rules. Wiley Interdiscip Rev RNA. 2021 May;12(3):e1627. doi: 10.1002/wrna.1627.
- Vasudevan S. Posttranscriptional upregulation by microRNAs. Wiley Interdiscip Rev RNA. 2012 May-Jun;3(3):311-30. doi: 10.1002/wrna.121.
- Long JM, Maloney B, Rogers JT, Lahiri DK. Novel upregulation of amyloid-β precursor protein (APP) by microRNA-346 via targeting of APP mRNA 5'-untranslated region: Implications in Alzheimer's disease. Mol Psychiatry. 2019 Mar;24(3):345-363. doi: 10.1038/s41380-018-0266-3.
- Ma F, Liu X, Li D, Wang P, Li N, Lu L, Cao X. MicroRNA-466l upregulates IL-10 expression in TLR-triggered macrophages by antagonizing RNA-binding protein tristetraprolin-mediated IL-10 mRNA degradation. J Immunol. 2010 Jun 1;184(11):6053-6059. doi: 10.4049/jimmunol.0902308.
- Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 2017 Mar;16(3):203-222. doi: 10.1038/nrd.2016.246.
- Li LC, Okino ST, Zhao H, Pookot D, Place RF, Urakami S, et al. Small dsRNAs induce transcriptional activation in human cells. Proc Natl Acad Sci U S A. 2006 Nov 14;103(46):17337-17342. doi: 10.1073/pnas.0607015103.
- Janowski BA, Younger ST, Hardy DB, Ram R, Huffman KE, Corey DR. Activating gene expression in mammalian cells with promoter-targeted duplex RNAs. Nat Chem Biol. 2007 Mar;3(3):166-173. doi: 10.1038/nchembio860.
- Tan CP, Sinigaglia L, Gomez V, Nicholls J, Habib NA. RNA Activation-A Novel Approach to Therapeutically Upregulate Gene Transcription. Molecules. 2021 Oct 28;26(21):6530. doi: 10.3390/molecules26216530.
- Mojica FJ, Díez-Villaseñor C, García-Martínez J, Soria E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol. 2005 Feb;60(2):174-82. doi: 10.1007/s00239-004-0046-3.
- Pickar-Oliver A, Gersbach CA. The next generation of CRISPR-Cas technologies and applications. Nat Rev Mol Cell Biol. 2019 Aug;20(8):490-507. doi: 10.1038/s41580-019-0131-5.
- Doudna JA, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014 Nov 28;346(6213):1258096. doi: 10.1126/science.1258096.
- Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature. 2011 Mar 31;471(7340):602-607. doi: 10.1038/nature09886.
- Gasiunas G, Barrangou R, Horvath P, Siksnys V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A. 2012 Sep 25;109(39):E2579-2586. doi: 10.1073/pnas.1208507109.
- Sparmann A, Vogel J. RNA-based medicine: from molecular mechanisms to therapy. EMBO J. 2023 Nov 2;42(21):e114760. doi: 10.15252/embj.2023114760.
- Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J. RNA-programmed genome editing in human cells. Elife. 2013 Jan 29;2:e00471. doi: 10.7554/eLife.00471.
- Miller SM, Wang T, Randolph PB, Arbab M, Shen MW, Huang TP, et al. Continuous evolution of SpCas9 variants compatible with non-G PAMs. Nat Biotechnol. 2020 Apr;38(4):471-481. doi: 10.1038/s41587-020-0412-8.
- Walton RT, Christie KA, Whittaker MN, Kleinstiver BP. Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants. Science. 2020 Apr 17;368(6488):290-296. doi: 10.1126/science.aba8853.
- Hustedt N, Durocher D. The control of DNA repair by the cell cycle. Nat Cell Biol. 2017;19(1):1-9.doi:10.1038/ncb3452.
- Giannoukos G, Ciulla DM, Marco E, Abdulkerim HS, Barrera LA, Bothmer A, et al. UDiTaS™, a genome editing detection method for indels and genome rearrangements. BMC Genomics. 2018 Mar 21;19(1):212. doi: 10.1186/s12864-018-4561-9.
- Turchiano G, Andrieux G, Klermund J, Blattner G, Pennucci V, El Gaz M, et al. Quantitative evaluation of chromosomal rearrangements in gene-edited human stem cells by CAST-Seq. Cell Stem Cell. 2021 Jun 3;28(6):1136-1147.e5. doi: 10.1016/j.stem.2021.02.002.
- Rees HA, Liu DR. Publisher Correction: Base editing: precision chemistry on the genome and transcriptome of living cells. Nat Rev Genet. 2018 Dec;19(12):801. doi: 10.1038/s41576-018-0068-0. Erratum for: Nat Rev Genet. 2018 Dec;19(12):770-788. doi: 10.1038/s41576-018-0059-1.
- Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. 2016 May 19;533(7603):420-424. doi: 10.1038/nature17946.
- Mayuranathan T, Newby GA, Feng R, Yao Y, Mayberry KD, Lazzarotto CR, et al. Potent and uniform fetal hemoglobin induction via base editing. Nat Genet. 2023 Jul;55(7):1210-1220. doi: 10.1038/s41588-023-01434-7.
- Kingwell K. Base editors hit the clinic. Nat Rev Drug Discov. 2022 Aug;21(8):545-547. doi: 10.1038/d41573-022-00124-z.
- Chen PJ, Liu DR. Prime editing for precise and highly versatile genome manipulation. Nat Rev Genet. 2023 Mar;24(3):161-177. doi: 10.1038/s41576-022-00541-1.
- Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. 2019 Dec;576(7785):149-157. doi: 10.1038/s41586-019-1711-4.
- Newby GA, Liu DR. In vivo somatic cell base editing and prime editing. Mol Ther. 2021 Nov 3;29(11):3107-3124. doi: 10.1016/j.ymthe.2021.09.002.
- Nelson JW, Randolph PB, Shen SP, Everette KA, Chen PJ, Anzalone AV, et al. Engineered pegRNAs improve prime editing efficiency. Nat Biotechnol. 2022 Mar;40(3):402-410. doi: 10.1038/s41587-021-01039-7.
- Adachi T, Nakamura Y. Aptamers: A Review of Their Chemical Properties and Modifications for Therapeutic Application. Molecules. 2019 Nov 21;24(23):4229. doi: 10.3390/molecules24234229.
- Ellington AD, Szostak JW. Selection in vitro of single-stranded DNA molecules that fold into specific ligand-binding structures. Nature. 1992 Feb 27;355(6363):850-852. doi: 10.1038/355850a0.
- Zhou J, Rossi J. Aptamers as targeted therapeutics: current potential and challenges. Nat Rev Drug Discov. 2017 Mar;16(3):181-202. doi: 10.1038/nrd.2016.199.
- Zhou J, Rossi JJ. Cell-type-specific, Aptamer-functionalized Agents for Targeted Disease Therapy. Mol Ther Nucleic Acids. 2014 Jun 17;3(6):e169. doi: 10.1038/mtna.2014.21.
- Blom DJ, Raal FJ, Santos RD, Marais AD. Lomitapide and Mipomersen-Inhibiting Microsomal Triglyceride Transfer Protein (MTP) and apoB100 Synthesis. Curr Atheroscler Rep. 2019 Nov 19;21(12):48. doi: 10.1007/s11883-019-0809-3.
- Aartsma-Rus A. FDA Approval of Nusinersen for Spinal Muscular Atrophy Makes 2016 the Year of Splice Modulating Oligonucleotides. Nucleic Acid Ther. 2017 Apr;27(2):67-69. doi: 10.1089/nat.2017.0665.
- Heo YA. Golodirsen: First Approval. Drugs. 2020 Feb;80(3):329-333. doi: 10.1007/s40265-020-01267-2.
- Dhillon S. Viltolarsen: First Approval. Drugs. 2020 Jul;80(10):1027-1031. doi: 10.1007/s40265-020-01339-3.
- Shirley M. Casimersen: First Approval. Drugs. 2021 May;81(7):875-879. doi: 10.1007/s40265-021-01512-2.
- Khan AU. Ribozyme: a clinical tool. Clin Chim Acta. 2006 May;367(1-2):20-7. doi: 10.1016/j.cca.2005.11.023.
- Morrow PK, Murthy RK, Ensor JD, Gordon GS, Margolin KA, Elias AD, et al. An open-label, phase 2 trial of RPI.4610 (Angiozyme) in the treatment of metastatic breast cancer. Cancer. 2012 Sep 1;118(17):4098-4104. doi: 10.1002/cncr.26730.
- Mitsuyasu RT, Merigan TC, Carr A, Zack JA, Winters MA, Workman C, et al. Phase 2 gene therapy trial of an anti-HIV ribozyme in autologous CD34+ cells. Nat Med. 2009 Mar;15(3):285-292. doi: 10.1038/nm.1932.
- Liang X, Li D, Leng S, Zhu X. RNA-based pharmacotherapy for tumors: From bench to clinic and back. Biomed Pharmacother. 2020 May;125:109997. doi: 10.1016/j.biopha.2020.109997.