Современные методы определения свежести мяса: мини-обзор

Бесплатный доступ

Оценка свежести скоропортящихся пищевых продуктов и продовольственного сырья, в частности мяса и мясопродуктов, является важным направлением исследований в области пищевых систем. В основных общепринятых методах определения свежести мяса используют органолептические, микробиологические и физико-химические показатели. Одним из точных методов оценки свежести мяса является анализ изменений, вызванных расщеплением аденозинтрифосфорной кислоты. Для количественного определения производных пурина в пищевых продуктах как одного из показателя свежести используют высокоточные методы, включая высокоэффективную жидкостную хроматографию, капиллярный электрофорез, чрезвычайно эффективную жидкостную хроматографию с массспектрометрией, газовую хроматографию с масс-спектрометрией, которые требуют дорогого оборудования, трудоемки и экономически нецелесообразны. Новым направлением в оценки свежести мяса является применение практических биосенсоров, позволяющих недорого и быстро обнаруживать низкие концентрации анализируемых веществ - показателей свежести продукта. Ключевым требованием является разработка оптимальной чувствительной поверхности, которая может стабилизировать молекулы биологического распознавания и должна быть сопряжена с физическими преобразователями, переводящими полученные данные биологического распознавания в количественный сигнал.

Еще

Определение свежести мяса, биосенсоры, протеомика, инструментальные методы, показатели свежести мяса, гиперспектральные технологии

Короткий адрес: https://sciup.org/142243935

IDR: 142243935   |   DOI: 10.53980/24131997_2024_4_22

Список литературы Современные методы определения свежести мяса: мини-обзор

  • Бурханова А.Г., Баженова Б.А., Егорова Р.А. и др. Исследование хранимоспособности рубленных полуфабрикатов с введением лука угловатого Allium Angulosum L. // Вестник ВСГУТУ. - 2022. - № 1 (84). - С. 5-14.
  • Егорова Р.А., Баженова Б.А., Бурханова А.Г. и др. Влияние лука угловатого Allium Angulosum L. на процесс окисления разных видов животного жира при хранении // Вестник ВСГУТУ. - 2020. - № 1 (76). - С. 26-36.
  • Chen J., Kong Q., Sun Z. et al. Freshness analysis based on lipidomics for farmed Atlantic salmon (Salmo salar L.) stored at different times // Food Chem. - 2022. - N 373. - Р. 131564.
  • Zhang Z., Kwok R.T., Yu Y. et al. Aggregation-induced emission luminogen-based fluorescence detection of hypoxanthine: A probe for biomedical diagnosis of energy metabolism-related conditions // J. Mater. Chem. B. - 2018. - N 6. - P. 4575-4578.
  • Guo X., Wang X., Huang D. et al. Method study on determination of total purine content in fish meat by diazotization reaction combined with SERS // LWT. - 2020. - N 123. - P. 109027.
  • Jia W., Fan Z., Shi Q. et al. LC-MS-based metabolomics reveals metabolite dynamic changes during irradiation of goat meat. Int. // Food Res. J. - 2021. - N 150. - P. 110721.
  • Daldal Y.D., Demiralay E.Q. Chromatographic and UV-visible spectro-photometric pKa determination of some purine antimetabolites // J. Mol. Liq. - 2020. - N 317. - P. 113930.
  • Mathew M.R., Kumar K.G. Poly Amino Hydroxy Naphthalene Sul-phonic Acid) Modified Glassy Carbon Electrode // An Effective Sensing Platform for the Simultaneous Determination of Xanthine and Hypoxanthine // J. Electrochem. Soc. - 2020. - N 167. - P. 047519.
  • Dervisevic M., Dervisevic E., Senel M. Recent progress in nanomateri-al-based electrochemical and optical sensors for hypoxanthine and xanthine // A review. Mikrochim. Acta. - 2019. - N 186. - P. 749.
  • Vlassa M., Filip M., Dragomir C. Simultaneous quantifications of four purine derivatives bi-omarkers in cow milk by SPEH PLC-DAD // Czech J. Food Sci. - 2021. - N 39. - P. 122-130.
  • Nanda P.K., Bhattacharya D., Das J.K. et al. Emerging Role of Biosensors and Chemical Indicators to Monitor the Quality and Safety of Meat and Meat Products // Chemosens. - 2022. - N 10. - P. 322.
  • Thakur D., Pandey C.M., Kumar D. Highly Sensitive Enzymatic Bio-sensor Based on Polyaniline-Wrapped Titanium Dioxide Nanohybrid for Fish Freshness Detection // Appl. Biochem. Biotechnol. - 2022. - N 194. - P. 3765-3778.
  • Tripathi A., Elias A.L., Jemere A.B. et al.. Amperometric De-termination of Xanthine Using Nanostructured NiO Electrodes Loaded with Xanthine Oxidase // ACS Food Sci. Technol. - 2022. - N 2. -P.1307-1317.
  • Sen S., Sarkar P. A simple electrochemical approach to fabricate func-tionalized MWCNT-nanogold decorated PEDOT nanohybrid for simultaneous quantification of uric acid, xanthine and hypoxanthine // Anal. Chim. Acta. - 2020. - N 1114. - N 15-28.
  • Wang G., Sun J., Yao Y. et al. Detection of Inosine Monophosphate (IMP) in meat using doubleenzyme sensor // Food Anal. Methods. - 2020. - N 13. - P. 420-432.
  • Zhang Y., Gao X., Ye Y. et al. Fe-Doped polydopamine nanoparti-cles with peroxidase-mimicking activity for the detection of hypoxanthine related to meat freshness // Analyst. - 2022. - N 147. - P. 956-964.
  • Song D., Chen Q., Zhai C. et al. Label-Free ZnIn2S4/UiO-66-NH2 Modified Glassy Carbon Electrode for Electrochemically Assessing Fish Freshness by Monitoring Xanthine and Hypoxanthine // Chemosens. - 2022. - N 10. - P. 158.
  • Liu R., Warner R.D., Zhou G. et al. Contribution of nitric oxide and protein S-nitrosylation to variation in fresh meat quality // Meat Sci. - 2018, - N144. - P. 135-148.
  • Cenci-Goga B.T., IuliettoM.F., Sechi P. et al. New trends in meat packaging // Microbiol. Res. -2020. N 11. - P. 56-67.
  • Mohammed H.H.H., Jin G., Ma M. et al. Comparative characterization of proximate nutritional compositions, microbial quality and safety of camel meat in relation to mutton, beef, and chicken // LWT. -2020. - N 118. - P. 108714.
  • Johnson J., Atkin D., Lee K. et al. Determining meat freshness using electrochemistry: Are we ready for the fast and furious? // Meat Sci. - 2019. - N 150. - P. 40-46.
  • Alvarez S., MullennA.M., Hamill R. et al. Dry-aging of beef as a tool to improve meat quality. Impact of processing conditions on the technical and organoleptic meat properties // Adv. Food Nutr. Res. -2021. - N 95. - P. 97-130.
  • Rey A.I., Menoyo D., Segura J. et al. Combina-tion of dietary glycaemic index and fasting time prior to slaughter as strategy to modify quality of pork // Meat Sci. - 2020. - N 161. - P. 108013.
  • Chauhan S.S., England E.M. Postmortem glycolysis and glycogenolysis: Insights from species comparisons // Meat Sci. - 2018. - N 144. - P. 118-126.
  • Lin W.C., He Y.M., Shi C. et al. ATP catabolism and bacterial succession in postmortem tissues of mud crab (Scylla paramamosain) and their roles in freshness // Int. Food Res. J. - 2022. - N 155. - P. 110992.
  • Rongsheng Z., Huaizhong W., Song L. et al. Deposition Pattern of Inosine Monophosphate (IMP) in Pig Muscle during Cold Storage // Anim. Feed Sci. - 2017. - N 9. - P. 197-218.
  • Feng X., Moon, S.H., Lee H.Y. et al. Effect of irradiation on the degradation of nucleotides in turkey meat // LWT. - 2016. - N 73. - P. 88-94.
  • Hong H., Regenstein J.M., Luo Y. The importance of ATP-related compounds for the freshness and flavor of post-mortem fish and shellfish muscle: A review. Crit. Rev // Food Sci. Nutr. - 2017. - N 57. - P. 1787-1798.
  • Ebata K., Yamashita Y., Inohara K. et al. Evaluation of Muscle Post-mortem Changes of Japanese Anchovy Engraulis japonicus and Round Herring Etrumeus teres and Recovery of ATP Concentration of Japanese Anchovy Following Brief Rest in a Fish Cage // J. Fish. Eng. - 2020. - N 56. - P. 149-158.
  • Huang Z., Zhang J., Gu Y. et al. Research progress on inosine monophosphate deposition mechanism in chicken muscle // Crit. Rev. Food Sci. Nutr. - 2022. - N 62. - P. 1062-1078.
  • Pierini G.D., Robledo S.N., Zon M.A. et al. Development of an electroanalytical method to control quality in fish samples based on an edge plane pyrolytic graphite electrode. Simultaneous determination of hypoxanthine, xanthine and uric acid // Microchem. J. - 2018. - N 138. - P. 58-64.
  • Karim N.U., Kennedy J.T., Linton M. et al. Determination of nucleotide and enzyme degradation in haddock (Melanogrammus aeglefinus) and herring (Clupea harengus) after high pressure processing // Peer J. - 2019. - N 7. - P. 7527.
  • Li J., Zhou G., Xue P. et al. Spoilage microbes' effect on freshness and IMP degradation in sturgeon fillets during chilled storage // Food Biosci. - 2021. - N 41. - P. 101008.
  • Min J.G., Joung B.C., Jung W.Y. Postmortem Changes in Spinal Cord-damaged Olive Flounder (Paralichthys olivaceus) // J. Food Nutr. Res. - 2019. - N 7. - P. 500-505.
  • Yoshioka T., Konno Y., Konno K. Below-zero storage of fish to suppress loss of freshness // Fish. Sci. - 2018. - N 85. - P. 601-609.
  • Felicia W. X. L., Rovina K., Nur'Aqilah N. et al. Assessing Meat Freshness via Nanotechnology Biosensors: Is the World Prepared for Lightning-Fast Pace Methods? // Biosensors. - 2023. - N 13. - P. 217.
  • Takayanagi F., Fukuuchi T., Yamaoka N. et al. Measurement of the total purine contents and free nucleosides, nucleotides, and purine bases composition in Japanese anchovies (Engraulis japonicus) using highperformance liquid chromatography with UV detection // Nucleos. Nucleat. Nucl. - 2020. - N 39. - P. 1458-1464.
  • Qu X., Sui J., Mi N. et al. Determination of four different purines and their content change in seafood by high-performance liquid chromatography // J. Sci. Food Agric. - 2017. - N 97. - P. 520-525.
  • Felisiak K., SzymczakM., Kotakowski E. Identification of non-protein nitrogen compounds separated by CZE without derivatization from TCA extract from salted herring meat // J. Food Compos. Anal. -2019. - N 77. - P. 108-114.
  • Ali N.S.M., Zabidi A.R., Manap M.N.A. et al. Effect of different slaughtering methods on metabolites of broiler chickens using Ultra High-Performance Liquid Chromatography-Time of Flight-Mass Spectrometry (UHPLC-TOF-MS) // Food Res. - 2020. - N 4. - P. 133-138.
  • Zheng Y., LiX., Chen X. et al. Simultaneous determination of amino acids, purines and derivatives in serum by ultrahigh-performance liquid chromatography/tandem mass spectrometry // RCM. - 2019. - N 33. - P.81-88.
  • Ueda S., Yamanoue M., Sirai Y. et al. Exploring the Characteristic Aroma of Beef from Japanese Black Cattle (Japanese Wagyu) via Sensory Evaluation and Gas Chromatography-Olfactometry // Metabolites. - 2021. - N 11. - P. 56.
  • Chang W.C. W., Wu H.Y., Yeh Y.et al. Untargeted foodomics strategy using high-resolution mass spectrometry reveals potential indicators for fish freshness // Anal. Chim. Acta. - 2020. - N 1127. - P. 98-105.
  • Dibirasulaev M., Belozerov G., Arkhipov L. et al. Quick and simple spectrophotometry method of identification of the thermal state of meat on the basis of composition and content of free nucleotides // Food Sci. Nutr. - 2018. - N 9. - P. 572-583.
  • Guo C., You S., Li C. et al. One-Step and Colorimetric Detection of Fish Freshness Indicator Hypoxanthine Based on the Peroxidase Activity of Xanthine Oxidase Grade I Ammonium Sulfate Suspension. Front // Microbiol. - 2021 - N 12. - P. 791227.
  • Prajapati S., Padhan B., Amulyasai B. et al. Nanotechnology-based sensors. Biopolym // Based Formul. - 2020. - N 1. - P. 237-262.
  • Bashir O., Bhat S.A., Basharat A. et al. Nano-engineered materials for sensing food pollutants: Technological advancements and safety issues // Chemosphere. - 2022. - N 292. - P. 133320.
  • Erna K.H., Felicia W.X.L., Rovina K. et al. Development of curcumin/rice starch films for sensitive detection of hypoxanthine in chicken and fish meat // Carbohydr. Polym. - 2022. - N 3. - P. 100189.
  • Bonnet C., Bouamra-Mechemache Z., Réquillart V. et al. Regulating meat consumption to improve health, the environment and animal welfare // Food Policy. - 2020. - N 97. - P. 101847.
  • Erna K.H., Rovina K., Mantihal S. Current. Detection Techniques for Monitoring the Freshness of Meat-Based Products: A Review // J. Package. Technol. Res. - 2021. - N 5. - P. 127-141.
  • Albelda J.A., Uzunoglu A., Santos G.N.C. et al. Graphene-titanium dioxide nanocomposite based hypoxanthine sensor for assessment of meat freshness // Biosens. Bioelectron. - 2017. - N 89. - P. 518-524.
  • Boluda A., Casado C.M., Alonso B. et al. Efficient Oxidase Biosensors Based on Bioelectrocata-lytic Surfaces of Electrodeposited Ferrocenyl Polycyclosiloxanes - Pt Nanoparticles // Chemosensors. - 2021. - N 9. - P. 81.
  • Furuhashi M. New insights into purine metabolism in metabolic diseases: Role of xanthine oxi-doreductase activity // Am. J. Physiol. Endocrinol. Metab. - 2020, - N 319, E827-E834.
  • Joon A., Ahlawat J., Aggarwal V. et al. An improved amperometric determination of xanthine with xanthine oxidase nanoparticles for testing of fish meat freshness // Sens. Bio-Sens. Res. - 2021. - N 33. -P.100437.
  • Ghanbari K., Nejabati F. Ternary nanocomposite-based reduced graphene oide/chitosan/Cr2O3 for the simultaneous determination of dopamine, uric acid, xanthine, and hypoxanthine in fish meat // Anal. Methods. - 2020. - N 12. - P. 1650-1661.
  • Yazdanparast S., Benvidi A., Abbasi S. et al. Enzyme-based ultrasensitive electrochemical biosensor using poly (l-aspartic acid)/MWCNT bio-nanocomposite for xanthine detection: A meat freshness marker // Microchem. J. - 2019. - N 149. - P. 104000.
  • Liu Z., Zhong Y., Hu Y. et al. Fluorescence strategy for sensitive detection of adenosine triphos-phate in terms of evaluating meat freshness // Food Chem. - 2019. - N 270. - P. 573-578.
  • Chen J., Lu Y., Yan F. et al. A fluorescent biosensor based on catalytic activity of platinum nanoparticles for freshness evaluation of aquatic products // Food Chem. - 2020. - N 310. - P. 125922.
  • Mooltongchun M., Teepoo S. A simple and cost-effective microfluidic paper-based biosensor analytical device and its application for hypoxanthine detection in meat samples // Food Anal. Methods. - 2019 -N 12. - P. 2690-2698.
  • Wang X., Lin Z.Z., Hong C.Y. et al. Colorimetric detection of hypoxanthine in aquatic products based on the enzyme mimic of cobalt-doped carbon nitride // New J. Chem. - 2021. - N 45. - P. 18307-18314.
  • Mustafa F., Andreescu S. Based enzyme biosensor for one-step detection of hypoxanthine in fresh and degraded fish // ACS Sens. - 2020. - N 5. - P. 4092-4100.
  • Mustafa F., Othman A., Andreescu S. Cerium oxide-based hypoxanthine biosensor for Fish spoilage monitoring // Sens. Actuators B Chem. - 2021. - N 332. - P. 129435.
  • Ding N., Dong S., Zhang Y. et al. Portable silver-doped prussian blue nanoparticle hydrogels for colorimetric and photothermal monitoring of shrimp and fish freshness // Sens. Actuators B Chem. - 2022. -N 363. - P. 131811.
  • Garg D., Singh M., Verma N. Review on recent advances in fabrication of enzymatic and chemical sensors for hypoxanthine // Food Chem. - 2021. - N 375. - P. 131839.
  • Mu G., Luan F., Xu L. et al. Determination of purines in soybean milk by capillary electrophoresis in comparison with high performance liquid chromatography // Anal. Methods. - 2012. - N 4. - P. 3386-3391.
  • Hu S., Yan J., HuangX. et al. A sensing platform for hypoxanthine detection based on aminofunc-tionalized metal organic framework nanosheet with peroxidase mimic and fluorescence properties // Sens. Actuators B Chem. - 2018. - N 267. - P. 312-319.
Еще
Статья научная