Сознание и душа: что добавят нейроинтерфейсы?

Бесплатный доступ

Извечные вопросы, касающихся смысла нашего существования в этом мире и природы наших субъективных восприятий (то есть, природы души) занимают как ученых, так и религиозных мыслителей. В нейронауках в настоящее время активно развиваются исследования механизмов сознания. Хотя эти подходы остаются в русле «вульгарного материализма» и навряд ли дадут ответ на сложную проблему сознания (то есть на проблему существования души), от исследований сознания следует ожидать новых, интересных результатов и новых проблем. В этой связи развитие нейроинтерфейсов, то есть систем, подключающихся к мозгу для считывания и доставки информации, должно оказать существенное влияние на наши представления о механизмах сознательных и бессознательных процессов в мозге. Действительно, за последние два десятилетия было разработано множество видов нейроинтерфейсов, которые регистрируют и интерпретируют моторную, сенсорную и когнитивную информацию, представленную в мозге. Нейроинтерфейсы также способны создавать искусственные ощущения посредством стимуляции сенсорных областей нервной системы. Более того, разработаны нейроинтерфейсы, подключающиеся к нескольким мозгам одновременно и поддерживающие коммуникацию между людьми и кооперативное решение ими разных задач. Окажут ли нейроинтерфейсы влияние на религиозную сферу - вопрос открытый, но можно предполагать, что да, окажут, поскольку нейроинтерфейсы уже вторглись в сферы образования и искусства. Этот обзор посвящен принципам работы нейроинтерфейсов; делается прогноз о том, какой вклад внесут нейроинтерфейсы в наше понимание сознания и души.

Еще

Сознание, душа, нейроинтерфейсы

Короткий адрес: https://sciup.org/140294944

IDR: 140294944   |   DOI: 10.24411/2541-9587-2019-10017

Список литературы Сознание и душа: что добавят нейроинтерфейсы?

  • Adrian (1932) — Adrian E. D. A. The mechanism of nervous action; electrical studies of the neurone. Philadelphia, London, University of Pennsylvania Press; H. Milford, Oxford University Press, 1932.
  • Aflalo et al. (2015) — Aflalo T., S. Kellis, C. Klaes, B. Lee, Y. Shi, K. Pejsa, K. Shanfield, S. Hayes-Jackson, M. Aisen, C. Heck, C. Liu, R.A. Andersen. Neurophysiology. Decoding motor imagery from the posterior parietal cortex of a tetraplegic human // Science. 2015. 348 (6237). P. 906-910.
  • Allison et al. (2007) — Allison B. Z., E. W Wolpaw,, J. R. Wolpaw. Brain-computer interface systems: progress and prospects // Expert Rev Med Devices. 2007. 4 (4). P. 463-474.
  • Andersen et al. (2004) — Andersen R. A., J. W. Burdick, S. Musallam, B. Pesaran, J. G. Cham. Cognitive neural prosthetics // Trends Cogn Sci. 2004. 8 (11). P. 486-493.
  • Anderson et al. (1995) — Anderson C.W., S.V. Devulapalli, E.A. Stolz. EEG signal classification with different signal representations // Neural Networks for Signal Processing. 1995.
  • Anderson et al. (2012) — Anderson N. R., T. Blakely, G. Schalk, E. C. Leuthardt, D. W. Moran. Electrocorticographic (ECoG) correlates of human arm movements // Exp Brain Res. 2012. 223 (1). P. 1-10.
  • Balakrishnan, Puthusserypady (2005) — BalakrishnanD., Puthusserypady S. Multilayer perceptrons for the classification of brain computer interface data // Proceedings of the IEEE 31st Annual Northeast Bioengineering Conference, 2005.
  • Bauernfeind et al. (2008) — Bauernfeind G, R. Leeb, S. C. Wriessnegger, G. Pfurtscheller. Development, set-up and first results for a one-channel near-infrared spectroscopy system / Entwicklung, Aufbau und vorläufige Ergebnisse eines Einkanal-NahinfrarotSpektroskopie-Systems // Biomedizinische Technik. 2008. 53 (1). P. 36-43.
  • Bauernfeind et al. (2014) — Bauernfeind G., D. Steyrl, C. Brunner, G.R. Muller-Putz. Single trial classification of fNIRS-based brain-computer interface mental arithmetic data: a comparison between different classifiers // Conf. Proc. IEEE Eng. Med. Biol. Soc. 2014. P. 2004-2007.
  • Bennett, Campbell (2000) — Bennett K. P., Campbell C. Support vector machines: hype or hallelujah? // ACM SIGKDD Explorations Newsletter. 2000. 2 (2). P. 1-13.
  • Bensmaia, Miller (2014) — Bensmaia, S.J., Miller L.E. Restoring sensorimotor function through intracortical interfaces: progress and looming challenges // Nature reviews Neuroscience. 2014. 15 (5). P. 313-325.
  • Berger (1929) — Berger H. Über das elektrenkephalogramm des menschen // European Archives of Psychiatry and Clinical Neuroscience. 1929. 87 (1). P. 527-570.
  • Berger et al. (2011) — Berger T.W., R.E.Hampson, D.Song, A. Goonawardena, V.Z. Marmarelis, S.A. DeadwylerA cortical neural prosthesis for restoring and enhancing memory // Journal of Neural Engineering. 2011. 8 (4). P. 046017.
  • Birbaumer et al. (1999) — Birbaumer N., N. Ghanayim, T. Hinterberger, I. Iversen, B. Kotchoubey, A. Kubler, J. Perelmouter, E. Taub, H. Flor. A spelling device for the paralysed // Nature. 1999. 398 (6725). P. 297-298.
  • Birbaumer et al. (2006) — Birbaumer N., C. Weber, C. Neuper, E. Buch, K. Haapen, L. Cohen. Physiological regulation of thinking: brain-computer interface (BCI) research // Prog. Brain Res. 2006. 159. P. 369-391.
  • Bishop (1995) — Bishop C.M. Neural networks for pattern recognition. Oxford University press, 1995.
  • Boniface, Antoun (1997) — Boniface S., Antoun N. Endovascular electroencephalography: the technique and its application during carotid amytal assessment // Journal of Neurology, Neurosurgery & Psychiatry. 1997. 62 (2). P. 193-195.
  • Bouton et al. (2016) — Bouton C.E., A. Shaikhouni, N.V. Annetta, M.A. Bockbrader, D.A.Friedenberg, D.M.Nielson, G.Sharma, P.B.Sederberg, B.C.Glenn, W.J.Mysiw, A. G. Morgan, M. Deogaonkar, A. R. Rezai. Restoring cortical control of functional movement in a human with quadriplegia // Nature. 2016.
  • Bower et al. (2013) — BowerM.R., M. Stead, J.J. Van Gompel, R.S. Bower, V. Sulc, S. J. Asirvatham, G. A. Worrell. Intravenous recording of intracranial, broadband EEG // Journal of neuroscience methods. 2013. 214 (1). P. 21-26.
  • Bozinovski et al. (1988) — Bozinovski S., M. Sestakov, L. Bozinovska. Using EEG alpha rhythm to control a mobile robot // Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1988.
  • Brindley (1970) — Brindley G.S. Sensations produced by electrical stimulation of the occipital poles of the cerebral hemispheres, and their use in constructing visual prostheses // Ann. R Coll. Surg. Engl. 47 (2). P. 106-108.
  • Brindley, Craggs (1972) — Brindley G. S., Craggs M. D. The electrical activity in the motor cortex that accompanies voluntary movement // J. Physiol. 1972. 223 (1). P. 28-29.
  • Brindley, Lewin (1968) — Brindley G.S., Lewin W.S. The sensations produced by electrical stimulation of the visual cortex // J. Physiol. 1968. 196 (2). P. 479-493.
  • Broseta et al. (1980) — Broseta J., Barcia-Salorio J.L., L. Lopez-Gomez, P. Roldan, J. Gonzalez-Darder, J. Barbera. Burr-hole electrocorticography // Acta. Neurochir. Suppl. (Wien). 1980. 30. P. 91-96.
  • Brumberg et al. (2010) — BrumbergJ.S., A.Nieto-Castanon, P.R.Kennedy, F.H. Guenther. Brain-Computer Interfaces for Speech Communication // Speech Commun. 2010. 52 (4). P. 367-379.
  • Brunner et al. (2011) — Brunner P., A.L. Ritaccio, J.F. Emrich, H. Bischof, G. Schalk. Rapid Communication with a "P300" Matrix Speller Using Electrocorticographic Signals (ECoG) // Front Neurosci. 2011. 5 (5).
  • Bullara et al. (1979) — Bullara L. A., W. F. Agnew, T. G. Yuen, S. Jacques, R. H. Pudenz. Evaluation of electrode array material for neural prostheses // Neurosurgery. 1979. 5 (6). P. 681-686.
  • Campbell et al. (1991) — CampbellP.K., K.E.Jones, R.J.Huber, K.W. Horch, R.A. Normann. A silicon-based, three-dimensional neural interface: manufacturing processes for an intracortical electrode array // Biomedical Engineering, IEEE Transactions. 1991. 38 (8). P. 758-768.
  • Carmena et al. (2003) — CarmenaJ.M., M.A. Lebedev, R. E. Crist, J. E. O'Doherty, D. M. Santucci, D. F. Dimitrov, P. G. Patil, C. S. Henriquez, M. A. Nicolelis. Learning to control a brain-machine interface for reaching and grasping by primates // PLoS Biol. 2003. 1 (2). p. 42.
  • Chalmers (1995) — Chalmers D. J. Facing up to the problem of consciousness //Journal of consciousness studies. 1995. 2 (3). P. 200-219.
  • Chao et al. (2010) — Chao Z.C., Y. Nagasaka, N. Fujii. Long-term asynchronous decoding of arm motion using electrocorticographic signals in monkeys // Front Neuroeng. 2010. 3 (3).
  • Chapin et al. (1999) — Chapin J.K., K.A. Moxon, R. S. Markowitz, M.A. Nicolelis. Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex // Nat. Neurosci. 1999. 2 (7). P. 664-670.
  • Chen et al. (2006) — Chen Q., H. Peng, C. Jiang, H. Fen. Off-line experiments and analysis of independent brain--computer interface // Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2006. 23 (3). P. 478-482.
  • Cicurel, Nicolelis (2015) — Cicurel R., Nicolelis M.A. The Relativistic Brain: How it Works and why it cannot by Simulated by a Turing Machine, Kios Press, 2015.
  • Clancy et al. (2014) — ClancyK.B., A.C.Koralek, R.M.Costa, D.E.Feldman, J.M. Carmena. Volitional modulation of optically recorded calcium signals during neuroprosthetic learning // Nat Neurosci. 2014. 17 (6). P. 807-809.
  • Cohen (1968) — Cohen D. Magnetoencephalography: evidence of magnetic fields produced by alpha-rhythm currents // Science. 1968. 161 (3843). P. 784-786.
  • Cohen (1972) — Cohen D. Magnetoencephalography: detection of the brain's electrical activity with a superconducting magnetometer // Science. 1972. 175 (4022). P. 664-666.
  • Collinger et al. (2013) — CollingerJ.L., B. Wodlinger, J.E.Downey, W.Wang, E. C. Tyler-Kabara, D.J. Weber, A.J. McMorland, M. Velliste, M.L. Boninger, A.B. Schwartz. High-performance neuroprosthetic control by an individual with tetraplegia // Lancet. 2013. 381 (9866). P. 557-564.
  • Collins et al. (1960) - Collins W.R., Jr., F.E.Nulsen, C.T.Randt. Relation of peripheral nerve fiber size and sensation in man // Arch Neurol. 1960. 3. P. 381-385.
  • Contreras-Vidal, Grossman (2013) — Contreras-Vidal J. L., Grossman R. G. NeuroRex: a clinical neural interface roadmap for EEG-based brain machine interfaces to a lower body robotic exoskeleton // Conf. Proc. IEEE Eng. Med. Biol. Soc. 2013. P. 1579-1582.
  • Cordeau et al. (1960) — CordeauJ.P., J. Gybels, H.Jasper, L.J.Poirier. Microelectrode studies of unit discharges in the sensorimotor cortex: investigations in monkeys with experimental tremor // Neurology. 1960. 10. P. 591-600.
  • Costa, Cabral (2000) — CostaE.J., CabralE.F. EEG-based discrimination between imagination of left and right hand movements using adaptive gaussian representation // Medical Engineering & Physics. 2000. 22 (5). P. 345-348.
  • Cox et al. (1995) — CoxR.W., A. Jesmanowicz, J.S. Hyde. Real-Time Functional Magnetic Resonance Imaging // Magnetic resonance in medicine. 1995. 33 (2). P. 230-236.
  • Coyle et al. (2004) — Coyle S., T. Ward, C. Markham, G. McDarby. On the suitability of near-infrared (NIR) systems for next-generation brain-computer interfaces // Physiological measurement. 2004. 25 (4). P. 815.
  • Craggs (1974) — CraggsM.D. Electrical activity of the motor cortex associated with voluntary movements in the baboon // J. Physiol. 1974. 237 (2). P. 12-13.
  • Craggs (1975) — Craggs M. D. Cortical control of motor prostheses: using the cord-transected baboon as the primate model for human paraplegia // Adv. Neurol. 1975. 10. P. 91-101.
  • Crick, Koch (2003) — Crick F., Koch C. A framework for consciousness // Nature neuroscience. 2003. 6 (2). P. 119.
  • Cushing (1909) — Cushing H. A note upon the faradic stimulation of the postcentral gyrus in conscious patients // Brain. 1909. 32 (1). P. 44-53.
  • Davis et al. (2016) — Davis T.S., H.A.Wark, D.T. Hutchinson, D.J.Warren, K. O'Neill, T. Scheinblum, G.A. Clark, R.A. Normann, B. Greger. Restoring motor control and sensory feedback in people with upper extremity amputations using arrays of 96 microelectrodes implanted in the median and ulnar nerves // J. Neural Eng. 2016. 13 (3). P. 036001.
  • Denison (2002) — Denison D. G. Bayesian methods for nonlinear classification and regression. John Wiley & Sons, 2002.
  • Dennett (1991) — DennettD. C. Consciousness explained. Boston, Little, Brown and Co, 1991.
  • Dennett (2000) — Dennett D. C. Facing backwards on the problem of consciousness // Explaining Consciousness — The Hard Problem. P. 33-36.
  • Djourno, Eyries (1957) — Djourno A., Eyries C. Prothese auditive par excitation electrique a distance du nerf sensoriel a laide dun bobinage inclus a demeure // Presse medicale. 1957. 65 (63). P. 1417-1417.
  • Dobelle (1994) — Dobelle W.H. Artificial vision for the blind. The summit may be closer than you think // ASAIO J. 1994. 40 (4). P. 919-922.
  • Dobelle et al. (1974) — Dobelle W.H., M.G.Mladejovsky, J.P. Girvin. Artifical vision for the blind: electrical stimulation of visual cortex offers hope for a functional prosthesis // Science. 1974. 183 (4123). P. 440-444.
  • Dobelle et al. (1979) — Dobelle W.H., D.O.Quest, J.L.Antunes, T.S.Roberts, J.P. Girvin. Artificial vision for the blind by electrical stimulation of the visual cortex // Neurosurgery. 1979. 5 (4). P. 521-527.
  • Donchin et al. (2000) — Donchin E., K.M. Spencer, R. Wijesinghe. The mental prosthesis: assessing the speed of a P300-based brain-computer interface // IEEE Trans Rehabil Eng. 2000. 8 (2). P. 174-179.
  • Eckstein et al. (2012) — EcksteinM.P, K. Das, B.T. Pham, M.F.Peterson, C. K. Abbey, J. L. Sy and B. Giesbrecht. Neural decoding of collective wisdom with multi-brain computing // Neurolmage. 2012. 59 (1). P. 94-108.
  • Eddington (1980) — Eddington D. K. Speech discrimination in deaf subjects with cochlear implants // J. Acoust. Soc. Am. 1980. 68 (3). P. 885-891.
  • Evarts (1964) — EvartsE. V. Temporal Patterns of Discharge of Pyramidal Tract Neurons during Sleep and Waking in the Monkey // J. Neurophysiol. 1964. 27. P. 152-171.
  • Evarts (1966) — Evarts E. V. Pyramidal tract activity associated with a conditioned hand movement in the monkey // J. Neurophysiol. 1966. 29 (6). P. 1011-1027.
  • Evarts et al. (1962) — EvartsE. V., E.Bental, B.Bihari, P.R.Huttenlocher. Spontaneous discharge of single neurons during sleep and waking // Science. 1962. 135 (3505). P. 726-728.
  • Fazel-Rezai et al. (2012) — Fazel-Rezai R., B.Z.Allison, C. Guger, E.W. Sellers, S. C. Kleih, A. Kubler. P300 brain computer interface: current challenges and emerging trends // Front Neuroeng. 2012. 5. P. 14.
  • Ferrari et al. (2004) — Ferrari M., L. Mottola, V. Quaresima. Principles, techniques, and limitations of near infrared spectroscopy // Canadian journal of applied physiology. 2004. 29 (4). P. 463-487.
  • Fetz (1969) — FetzE.E. Operant conditioning of cortical unit activity // Science. 1969. 163 (3870). P. 955-958.
  • Finke et al. (2009) — Finke A., A. Lenhardt, H. Ritter. The MindGame: a P300-based brain-computer interface game // Neural Netw. 2009. 22 (9). P. 1329-1333.
  • Fisher (1936) — FisherR.A. The use of multiple measurements in taxonomic problems // Annals of eugenics. 1936. 7 (2). P. 179-188.
  • Fitzsimmons et al. (2007) — FitzsimmonsN.A., W.Drake, T.L.Hanson, M.A. Lebedev, M.A. Nicolelis. Primate reaching cued by multichannel spatiotemporal cortical microstimulation // J. Neurosci. 2007. 27 (21). P. 5593-5602.
  • Fitzsimmons et al. (2009) — FitzsimmonsN.A., M.A.Lebedev, I.D.Peikon, M.A. Nicolelis. Extracting kinematic parameters for monkey bipedal walking from cortical neuronal ensemble activity // Front Integr. Neurosci. 2009. 3 (3).
  • Folcher et al. (2014) — Folcher M., S. Oesterle, K. Zwicky, T. Thekkottil, J. Heymoz, M. Hohmann, M. Christen, M. D. El-Baba, P. Buchmann, M. Fussenegger. Mind-controlled transgene expression by a wireless-powered optogenetic designer cell implant // Nature communications. 2014. 5.
  • Frank (1968) — Frank K. Some approaches to the technical problem of chronic excitation of peripheral nerve // Ann. Otol. Rhinol. Laryngol. 1968. 77. P. 761-771.
  • Friston et al. (1998) — Friston K.J., P. Fletcher, O. Josephs, A. Holmes, M. Rugg, R. Turner. Event-related fMRI: characterizing differential responses // Neuroimage. 1998. 7 (1). P. 30-40.
  • Fuchs et al. (2003) — Fuchs T., N.Birbaumer, W. Lutzenberger, J.H. Gruzelier, J. Kaiser. Neurofeedback treatment for attention-deficit/hyperactivity disorder in children: a comparison with methylphenidate // Applied psychophysiology and biofeedback. 2003. 28 (1). P. 1-12.
  • Garrett et al. (2003) — Garrett D., D. A. Peterson, C. W Anderson, M. H. Thaut. Comparison of linear, nonlinear, and feature selection methods for EEG signal classification // IEEE Transactions on neural systems and rehabilitation engineering. 2003. 11 (2). P. 141-144.
  • Georgopoulos et al. (1986) — GeorgopoulosA.P., A.B.Schwartz, R.E.Kettner. Neuronal population coding of movement direction // Science. 1986. 233 (4771). P. 1416-1419.
  • Georgopoulos et al. (1988) — GeorgopoulosA.P, R.E.Kettner, A.B.Schwartz. Primate motor cortex and free arm movements to visual targets in three-dimensional space. II. Coding of the direction of movement by a neuronal population // J. Neurosci. 1988. 8 (8). P. 2928-2937.
  • Georgopoulos et al. (2005) — GeorgopoulosA.P., F.J.Langheim, A. C.Leuthold, A.N. Merkle. Magnetoencephalographic signals predict movement trajectory in space // Exp Brain Res. 2005. 167 (1). P. 132-135.
  • Glannon (2016) — Glannon W. Ethical issues in neuroprosthetics // Journal of neural engineering. 2016. 13 (2). P. 021002.
  • Grau et al. (2014) — Grau C., R. Ginhoux, A. Riera, T. L. Nguyen, H. Chauvat, M. Berg, J.L. Amengual, A. Pascual-Leone, G. Ruffini. Conscious brain-to-brain communication in humans using non-invasive technologies // PLoS One. 2014. 9 (8). P. e105225.
  • Green (1958) — Green J.D. A simple microelectrode for recording from the central nervous system // Nature. 1958. 182 (4640). p. 962.
  • Grewal (2011) — Grewal M.S. Kalman filtering. Springer, 2011.
  • Grewe et al. (2010) — Grewe B.F., D. Langer, H. Kasper, B.M. Kampa, F. Helmchen. High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision // Nature methods. 2010. 7 (5). P. 399-405.
  • Grinvald et al. (1988) — Grinvald A., R. Frostig, E. Lieke, R. Hildesheim. Optical imaging of neuronal activity // Physiological reviews. 1988. 68 (4). P. 1285-1366.
  • Grinvald, Hildesheim (2004) — Grinvald A., Hildesheim R. VSDI: a new era in functional imaging of cortical dynamics // Nature Reviews Neuroscience. 2004. 5 (11). P. 874-885.
  • Gross (1995) — Gross C. G. Aristotle on the brain // The Neuroscientist. 1995. 1 (4). P. 245-250.
  • Guenther et al. (2009) — Guenther F. H., J. S. Brumberg, E. J. Wright, A. Nieto-Castanon, J. A. Tourville, M. Panko, R. Law, S. A. Siebert, J. L. Bartels, D. S. Andreasen, P. Ehirim, H. Mao, P. R. Kennedy. A wireless brain-machine interface for real-time speech synthesis // PLoS One. 2009. 4 (12). P. e8218.
  • Halder et al. (2010) — Halder S., M. Rea, R.. Andreoni, F. Nijboer, E.M. Hammer, S. C. Kleih, N. Birbaumer, A. Kubler. An auditory oddball brain-computer interface for binary choices // Clin. Neurophysiol. 2010. 121 (4). P. 516-523.
  • Hämäläinen et al. (1993) — Hämäläinen, M., R. Hari, R.J. Ilmoniemi, J. Knuutila and O. V. Lounasmaa. Magnetoencephalography — theory, instrumentation, and applications to noninvasive studies of the working human brain // Reviews of modern Physics. 1993. 65 (2). p. 413.
  • Hameroff, Penrose (1996) — Hameroff S., Penrose R. Orchestrated reduction of quantum coherence in brain microtubules: A model for consciousness // Mathematics and computers in simulation. 1996. 40 (3-4). P. 453-480.
  • Hasegawa et al. (2009) — Hasegawa R. P., Y. T. Hasegawa, M. A. Segraves. Neural mind reading of multi-dimensional decisions by monkey mid-brain activity // Neural Networks. 2009. 22 (9). P. 1247-1256.
  • Haykin (2014) — HaykinS.S. Adaptive filter theory. Upper Saddle River, New Jersey, Pearson, 2014.
  • He et al. (2016) — He B.D., M. Ebrahimi, L. Palafox, L. Srinivasan. Signal quality of endovascular electroencephalography // Journal of neural engineering. 2016. 13 (1). P. 016016.
  • Helmchen et al. (2001) — Helmchen F., M. S. Fee, D. W. Tank, W. Denk. A miniature head-mounted two-photon microscope: high-resolution brain imaging in freely moving animals // Neuron. 2001. 31 (6). P. 903-912.
  • Hill et al. (2012) — HillN.J, D. Gupta, P.Brunner, A. Gunduz, M.A.Adamo, A. Ritaccio, G. Schalk. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping // J. Vis. Exp. 2012. (64).
  • Hinterberger et al. (2003) — Hinterberger, T., A. Kubler, J. Kaiser, N. Neumann, N. Birbaumer. A brain-computer interface (BCI) for the locked-in: comparison of different EEG classifications for the thought translation device // Clin. Neurophysiol. 2003. 114 (3). P. 416-425.
  • Hiraiwa et al. (1990) — Hiraiwa A., K. Shimohara, Y. Tokunaga. EEG topography recognition by neural networks // IEEE Engineering in Medicine and Biology Magazine. 1990. 9 (3). P. 39-42.
  • Hochberg et al. (2006) — Hochberg L.R., M.D. Serruya, G. M. Friehs, J. A. Mukand, M. Saleh, A.H. Caplan, A. Branner, D. Chen, R.D. Penn, J.P. Donoghue. Neuronal ensemble control of prosthetic devices by a human with tetraplegia // Nature. 2006. 442 (7099). P. 164-171.
  • Hochberg et al. (2012) — HochbergL.R., D.Bacher, B.Jarosiewicz, N.Y.Masse, J. D. Simeral, J. Vogel, S. Haddadin, J. Liu, S. S. Cash, P. van der Smagt, J. P. Donoghue. Reach and grasp by people with tetraplegia using a neurally controlled robotic arm // Nature. 2012. 485 (7398). P. 372-375.
  • Huan, Palaniappan (2004) — Huan N. J., Palaniappan R. Neural network classification of autoregressive features from electroencephalogram signals for brain-computer interface design // J. Neural Eng. 2004. 1 (3). P. 142-150.
  • Humphrey et al. (1970) — HumphreyD.R., E.M.Schmidt, W.D. Thompson. Predicting measures of motor performance from multiple cortical spike trains // Science. 1970. 170 (3959). P. 758-762.
  • Hwang et al. (2014) — Hwang H.-J., J.-H. Lim, D.-W. Kim, C.-H. Im. Evaluation of various mental task combinations for near-infrared spectroscopy-based brain-computer interfaces // Journal of biomedical optics. 2014. 19 (7). P. 77005.
  • Ifft et al. (2013) — Ifft P.J, S. Shokur, Z. Li, M.A. Lebedev, M.A. Nicolelis. A brain-machine interface enables bimanual arm movements in monkeys // Sci. Transl. Med. 2013. 5 (210). P. 210ra154.
  • Jobsis (1977) — Jobsis F. F. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters // Science. 1977. 198 (4323). P. 1264-1267.
  • Kalman (1960) — Kalman R.E. A new approach to linear filtering and prediction problems // Journal of basic Engineering. 1960. 82 (1). P. 35-45.
  • Kalman, Bucy (1961) — KalmanR.E., BucyR.S. New results in linear filtering and prediction theory // Journal of basic engineering. 1961. 83 (1). P. 95-108.
  • Kamiya (1971) — Kamiya J. Biofeedback training in voluntary control of EEG alpha rhythms // Calif. Med. 1971. 115 (3). p. 44.
  • Kennedy (1989) — KennedyP.R. The cone electrode: a long-term electrode that records from neurites grown onto its recording surface // J. Neurosci. Methods. 1989. 29 (3). P. 181-193.
  • Kennedy et al. (1992) - KennedyP.R., R.A.Bakay, S.M.Sharpe. Behavioral correlates of action potentials recorded chronically inside the Cone Electrode // Neuroreport. 1992. 3 (7). P. 605-608.
  • Kennedy et al. (1992a) - KennedyP.R, S.S.Mirra, R.A.Bakay. The cone electrode: ultrastructural studies following long-term recording in rat and monkey cortex // Neurosci. Lett. 1992. 142 (1). P. 89-94.
  • Kettner et al. (1988) — KettnerR.E., A.B. Schwartz, A.P. Georgopoulos. Primate motor cortex and free arm movements to visual targets in three-dimensional space. III. Positional gradients and population coding of movement direction from various movement origins // J. Neurosci. 1988. 8 (8). P. 2938-2947.
  • Kim et al. (2003) — Kim S.P., J.C. Sanchez, D. Erdogmus, Y.N. Rao, J. Wessberg, J. C. Principe, M. Nicolelis. Divide-and-conquer approach for brain machine interfaces: nonlinear mixture of competitive linear models // Neural Netw. 2003. 16 (5-6). P. 865-871.
  • Kim et al. (2005) — Kim S.-P., Y.N. Rao, D. Erdogmus, J. C. Sanchez, M.A. Nicolelis, J. C. Principe. Determining patterns in neural activity for reaching movements using nonnegative matrix factorization // EURASIP Journal on Applied Signal Processing. 2005. P. 3113-3121.
  • Kim et al. (2006) — Kim S.P., J. C. Sanchez, Y.N. Rao, D. Erdogmus, J.M. Carmena, M. A. Lebedev, M. A. Nicolelis, J. C. Principe. A comparison of optimal MIMO linear and nonlinear models for brain-machine interfaces // J. Neural Eng. 2006. 3 (2). P. 145-161.
  • Kostov, Polak (1997) — Kostov A., Polak M. Prospects of computer access using voluntary modulated EEG signal // Proc. ECPD Symposium on Brain & Consciousness. Belgrade, 1997.
  • Kostov, Polak (2000) — Kostov A., Polak M. Parallel man-machine training in development of EEG-based cursor control // IEEE Transactions on Rehabilitation Engineering. 2000. 8 (2). P. 203-205.
  • Lal et al. (2005) — LalT.N., M.Schröder, N.J.Hill, H.Preissl, T. Hinterberger, J. Mellinger, M. Bogdan, W. Rosenstiel, T. Hofmann, N. Birbaumer. A brain computer interface with online feedback based on magnetoencephalography // Proceedings of the 22nd international conference on Machine learning. ACM, 2005.
  • Lebedev et al. (2005) — LebedevM.A., J.M. Carmena, J.E. O'Doherty, M. Zacksenhouse, C. S. Henriquez, J. C. Principe, M. A. Nicolelis. Cortical ensemble adaptation to represent velocity of an artificial actuator controlled by a brain-machine interface // J. Neurosci. 2005. 25 (19). P. 4681-4693.
  • Lebedev et al. (2008) — LebedevM.A, J.E. O'Doherty, M.A. Nicolelis. Decoding of temporal intervals from cortical ensemble activity // J. Neurophysiol. 2008. 99 (1). P. 166-186.
  • Lebedev et al. (2011) — LebedevM.A., A.J. Tate, T.L. Hanson, Z. Li, J.E. O'Doherty, J.A. Winans,P.J. Ifft,K.Z. Zhuang,N.A. Fitzsimmons, D.A. Schwarz, A.M. Fuller, J.H. An, M. A. Nicolelis. Future developments in brain-machine interface research // Clinics (Sao Paulo). 2011. 66 Suppl 1. P. 25-32.
  • Lebedev, Nicolelis (2006) — LebedevM.A., NicolelisM.A. Brain-machine interfaces: past, present and future // Trends Neurosci. 2006. 29 (9). P. 536-546.
  • Lebedev, Nicolelis (2017) — LebedevM.A., NicolelisM.A. Brain-Machine Interfaces: From Basic Science to Neuroprostheses and Neurorehabilitation // Physiological Reviews. 2017. 97 (2). P. 767-837.
  • Lee et al. (2010) — Lee P. L, J. J. Sie, Y. J. Liu, C. H. Wu, M. H. Lee, C. H. Shu, P. H. Li, C. W. Sun, K. K. Shyu. An SSVEP-actuated brain computer interface using phase-tagged flickering sequences: a cursor system // Ann Biomed Eng. 2010. 38 (7). P. 2383-2397.
  • Levinson (194б) — Levinson N. The Wiener (root mean square) error criterion in filter design and prediction // Journal of Mathematics and Physics. 194б. 25 (1). P. 261-218.
  • Li et al. (2009) — Li Z., J.E. O'Doherty, T.L. Hanson, M.A. Lebedev, C. S. Henriquez, M. A. Nicolelis. Unscented Kalman filter for brain-machine interfaces // PLoS One. 2009. 4 (1). P. e6243.
  • Li, Jasper (1953) — Li C. L., JasperH. Microelectrode studies of the electrical activity of the cerebral cortex in the cat // J. Physiol. 1953. 121 (1). P. 111-140.
  • Li, Zhang (2016) — Li G., Zhang D. Brain-Computer Interface Controlled Cyborg: Establishing a Functional Information Transfer Pathway from Human Brain to Cockroach Brain // PloS О^. 2016. 11 (3). P. e015066l.
  • Libet et al. (1964) — Libet B, W. W. Alberts, E. W. Wright, Jr., L. D. Delattre, G. Levin, B. Feinstein. Production of Threshold Levels of Conscious Sensation by Electrical Stimulation of Human Somatosensory Cortex // J. Neurophysiol. 1964. 21. P. 546-518.
  • Lilly (1958) — Lilly J. C. Electrode and cannulae implantation in the brain by a simple percutaneous method // Science. 1958. 121 (3301). P. 1181-1182.
  • Llinas et al. (2005) — Llinas R.R., K.D. Walton, M. Nakao, I. Hunter, P.A. Anquetil. Neuro-vascular central nervous recording/stimulating system: Using nanotechnology probes // Journal of Nanoparticle Research. 2005. 1 (2-3). P. 111-121.
  • Loeb et al. (1911) — Loeb G.E., A.E.Walker, S. Uematsu, B.W. Konigsmark. Histological reaction to various conductive and dielectric films chronically implanted in the subdural space // J. Biomed Mater Res. 1911. 11 (2). P. 195-210.
  • Logothetis et al. (2001) — LogothetisN.K., J.Pauls, M.Augath, T. Trinath, A. Oeltermann. Neurophysiological investigation of the basis of the fMRI signal // Nature. 2001. 412 (6843). P. 150-151.
  • Martens et al. (2014) — Martens S., M. Bensch, S. Halder, J. Hill, F. Nijboer, A. Ramos-Murguialday, B. Schoelkopf, N. Birbaumer, A. Gharabaghi. Epidural electrocortico-graphy for monitoring of arousal in locked-in state // Front Hum Neurosci. 2014. 8. P. 861.
  • May et al. (2014) — May T., I. Ozden, B. Brush, D. Borton, F. Wagner, N. Agha, D. L. Sheinberg, A. V. Nurmikko. Detection of Optogenetic Stimulation in Somatosensory Cortex by Non-Human Primates-Towards Artificial Tactile Sensation // PloS one. 2014. 9 (12). P. e114529.
  • Maynard et al. (1991) — MaynardE.M., C.T.Nordhausen, R.A.Normann. The Utah intracortical Electrode Array: a recording structure for potential brain-computer interfaces // Electroencephalogr Clin Neurophysiol. 1991. 102 (3). P. 228-239.
  • McFadden (2002) — McFadden J. The conscious electromagnetic information (cemi) field theory: the hard problem made easy? // Journal of Consciousness Studies. 2002. 9 (8). P. 45-60.
  • Mirghasemi et al. (2006) — Mirghasemi H., R. Fazel-Rezai, M.B. Shamsollahi. Analysis of p300 classifiers in brain computer interface speller // Conf. Proc. IEEE Eng Med Biol. Soc. 2006. 1. P. 6205-6208.
  • Mirowski et al. (1980) — Mirowski M., P.R.Reid, M.M.Mower, L. Watkins, V.L. Gott, J.F. Schauble, A. Langer, M. Heilman, S.A. Kolenik, R. E. Fischell. Termination of malignant ventricular arrhythmias with an implanted automatic defibrillator in human beings // New England Journal of Medicine. 1980. 303 (6). P. 322-324.
  • Musallam et al. (2004) — Musallam S., B.D. Corneil, B. Greger, H. Scherberger, R.A. Andersen. Cognitive control signals for neural prosthetics // Science. 2004. 305 (5681). P. 258-262.
  • Naseer et al. (2014) — Naseer N., M.J. Hong, K.S. Hong. Online binary decision decoding using functional near-infrared spectroscopy for the development of brain-computer interface // Exp. Brain Res. 2014. 232 (2). P. 555-564.
  • Nicoleli et al. (1995) — NicolelisM.A, L.A.Baccala, R.C.Lin, J.K. Chapin. Sensorimotor encoding by synchronous neural ensemble activity at multiple levels of the somatosensory system // Science. 1995. 268 (5215). P. 1353-1358.
  • Nicolelis (2001) — NicolelisM.A. Actions from thoughts // Nature. 2001. 409 (6818). P. 403-407.
  • Nicolelis, Chapin (1994) — NicolelisM.A., Chapin J.K. Spatiotemporal structure of somatosensory responses of many-neuron ensembles in the rat ventral posterior medial nucleus of the thalamus // J. Neurosci. 1994. 14 (6). P. 3511-3532.
  • Nicolelis, Lebedev (2009) — NicolelisM.A., LebedevM.A. Principles of neural ensemble physiology underlying the operation of brain-machine interfaces // Nat. Rev. Neurosci. 2009. 10 (7). P. 530-540.
  • Niedermeyer, Lopes da Silva (2005) — Niedermeyer E., Lopes da Silva F.H. Electr oencephalography basic principles, clinical applications, and related fields. Philadelphia, Lippincott Williams & Wilkins, 2005. 1309p.
  • Nikolenko et al. (2007) — Nikolenko V., K.E. Poskanzer, R. Yuste. Two-photon photostimulation and imaging of neural circuits // Nature methods. 2007. 4 (11). P. 943-950.
  • Nowlis, Kamiya (1970) — NowlisD.P., Kamiya J. The control of electroen-cephalographic alpha rhythms through auditory feedback and the associated mental activity // Psychophysiology. 1970. 6 (4). P. 476-484.
  • Nowlis, Wortz (1973) — Nowlis D.P., Wortz E.C. Control of the ratio of midline parietal to midline frontal EEG alpha rhythms through auditory feedback // Percept Mot Skills. 1973. 37 (3). P. 815-824.
  • Obermaier et al. (2001) — Obermaier B., C. Neuper, C. Guger, G. Pfurtscheller. Information transfer rate in a five-classes brain-computer interface // IEEE Trans Neural Syst. Rehabil. Eng. 2001. 9 (3). P. 283-288.
  • O'Doherty et al. (2009) — O'DohertyJ.E., M.A.Lebedev, T.L.Hanson, N.A. Fitzsimmons, M.A. Nicolelis. A brain-machine interface instructed by direct intracortical microstimulation // Front Integr. Neurosci. 2009. 3 (20).
  • O'Doherty et al. (2011) — O'DohertyJ.E, M.A. Lebedev, P.J. Ifft, K.Z. Zhuang, S. Shokur, H. Bleuler, M.A. Nicolelis. Active tactile exploration using a brain-machine-brain interface // Nature. 2011. 479 (7372). P. 228-231.
  • Ossadtchi et al. (2017) — Ossadtchi A., T. Shamaeva, E. Okorokova, V. Moiseeva, M.A. Lebedev. Neurofeedback learning modifies the incidence rate of alpha spindles, but not their duration and amplitude // Scientific reports. 2017. 7 (1). P. 3772.
  • Oxley et al. (2016) — OxleyT.J., N.L. Opie, S.E. John, G.S. Rind, S.M. Ronayne, T. L. Wheeler, J. W. Judy, A. J. McDonald, A. Dornom, T. J. Lovell. Minimally invasive endovascular stent-electrode array for high-fidelity, chronic recordings of cortical neural activity // Nature biotechnology. 2016.
  • Pais-Vieira et al. (2013) — Pais-Vieira, M., M. Lebedev, C. Kunicki, J. Wang, M.A. Nicolelis. A brain-to-brain interface for real-time sharing of sensorimotor information // Sci Rep. 2013. 3. P. 1319
  • Pais-Vieira et al. (2015) — Pais-Vieira M., G. Chiuffa, M. Lebedev, A. Yadav, M.A. Nicolelis. Building an organic computing device with multiple interconnected brains // Sci Rep. 2015. 5. P. 11869.
  • Patil et al. (2004) - PatilP.G, J.M. Carmena, M.A.Nicolelis, D.A. Turner. Ensemble recordings of human subcortical neurons as a source of motor control signals for a brain-machine interface // Neurosurgery. 2004. 55 (1). P. 27-35.
  • Patrick et al. (1971) — Patrick, J., B. Valeur, L. Monnerie, J.-P. Changeux. Changes in extrinsic fluorescence intensity of the electroplax membrane during electrical excitation // The Journal of membrane biology. 1971. 5 (1). P. 102-120.
  • Penfield, Boldrey (1937) — Penfield W., Boldrey E. Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation // Brain: A journal of neurology. 1937.
  • Pfurtscheller, Lopes da Silva (1999) — Pfurtscheller G., Lopes da Silva F. EEG event-related desynchronization (ERD) and event-related synchronization (ERS) // Electroencephalography: basic principles, clinical applications and related fields. 1999. P. 958.
  • Pfurtscheller, Neuper (2006) — Pfurtscheller G, Neuper C. Future prospects of ERD/ERS in the context of brain-computer interface (BCI) developments // Prog. Brain Res. 2006. 159. P. 433-437.
  • Piccione et al. (2006) — Piccione F., F. Giorgi, P. Tonin, K. Priftis, S. Giove, S. Silvoni, G. Palmas, F. Beverina. P300-based brain computer interface: reliability and performance in healthy and paralysed participants // Clin. Neurophysiol. 2006. 117 (3). P. 531-537.
  • Placidi et al. (2015) — Placidi G., A. Petracca, M. Spezialetti, D. Iacoviello. Classification strategies for a single-trial binary Brain Computer Interface based on remembering unpleasant odors // Conf. Proc. IEEE Eng. Med Biol. Soc. 2015. P. 7019-7022.
  • Pockett (2000) — Pockett S. The nature of consciousness: A hypothesis. IUniverse, 2000.
  • Poli et al. (2013) — Poli R., C. Cinel, A. Matran-Fernandez, F. Sepulveda, A. Stoica. Towards cooperative brain-computer interfaces for space navigation // Proceedings of the 2013 international conference on Intelligent user interfaces. ACM, 2013.
  • Poli et al. (2014) — Poli R., D. Valeriani, C. Cinel. Collaborative brain-computer interface for aiding decision-making // PLoS One. 2014. 9 (7). P. e102693.
  • Power et al. (2010) — PowerS.D., T.H. Falk, T. Chau. Classification of prefrontal activity due to mental arithmetic and music imagery using hidden Markov models and frequency domain near-infrared spectroscopy // Journal of neural engineering. 2010. 7 (2). P. 026002.
  • Power et al. (2011) — PowerS.D., A. Kushki, T. Chau. Towards a system-paced near-infrared spectroscopy brain-computer interface: differentiating prefrontal activity due to mental arithmetic and mental singing from the no-control state // J. Neural. Eng. 2011. 8 (6). P. 066004.
  • Prasad et al. (2010) — Prasad G., P. Herman, D. Coyle, S. McDonough, J. Crosbie. Applying a brain-computer interface to support motor imagery practice in people with stroke for upper limb recovery: a feasibility study // J. Neuroeng. Rehabil. 2010. 7 (60).
  • Rajangam et al. (2016) — Rajangam S., P.H. Tseng, A. Yin, G. Lehew, D. Schwarz, M.A. Lebedev, M.A. Nicolelis. Wireless Cortical Brain-Machine Interface for Whole-Body Navigation in Primates // Sci. Rep. 2016. 6. P. 22170.
  • Ramakrishnan et al. (2015) — Ramakrishnan A., P. J. Ifft, M. Pais-Vieira, Y. W. Byun, K. Z. Zhuang, M. A. Lebedev, M. A. Nicolelis. Computing Arm Movements with a Monkey Brainet // Sci. Rep. 5. P. 10767.
  • Reid (1989) — Reid S.A. Toward the ideal electrocorticography array // Neurosurgery 25 (1). P. 135-137.
  • Romo et al. (1998) — Romo R., A. Hernández, A. Zainos, E. Salinas. Somatosensory discrimination based on cortical microstimulation // Nature. 1998. 392 (6674). P. 387-390.
  • Rothschild (2010) — Rothschild R. M. Neuroengineering tools/applications for bidirectional interfaces, brain-computer interfaces, and neuroprosthetic implants — a review of recent progress // Front Neuroeng. 2010. 3. P. 112.
  • Rouse et al. (2013) — Rouse A. G, J. J. Williams, J. J. Wheeler, D. W. Moran. Cortical adaptation to a chronic micro-electrocorticographic brain computer interface // J. Neurosci. 2013. 33 (4). P. 1326-1330.
  • Sanchez et al. (2003) — Sanchez J. C., D. Erdogmus, Y. Rao, J. C. Principe, M. Nicolelis, J. Wessberg. Learning the contributions of the motor, premotor, and posterior parietal cortices for hand trajectory reconstruction in a brain machine interface // Neural Engineering, 2003. Conference Proceedings. First International IEEE EMBS Conference on, IEEE.
  • Schalk (2010) — Schalk G. Can Electrocorticography (ECoG) Support Robust and Powerful Brain-Computer Interfaces? // Front Neuroeng. 2010. 3 (9).
  • Scherer et al. (2007) — Scherer R., A. Schloegl, F. Lee, H. Bischof, J. Jansa, G. Pfurtscheller. The self-paced graz brain-computer interface: methods and applications // Comput. Intell. Neurosci. 2007. P. 79826.
  • Schmidt (1980) — Schmidt E. M. Single neuron recording from motor cortex as a possible source of signals for control of external devices // Ann Biomed. Eng. 1980. 8 (4-6). P. 339-349.
  • Schwartz et al. (1988) — SchwartzA.B., R.E. Kettner, A.P. Georgopoulos. Primate motor cortex and free arm movements to visual targets in three-dimensional space. I. Relations between single cell discharge and direction of movement // J. Neurosci. 1988. 8 (8). P. 2913-2927.
  • Schwarz et al. (2014) — Schwarz D.A., M.A. Lebedev, T.L. Hanson, D. F. Dimitrov, G. Lehew, J. Meloy, S. Rajangam, V. Subramanian, P.J. Ifft, Z. Li, A. Ramakrishnan, A. Tate, K.Z. Zhuang, M.A. Nicolelis. Chronic, wireless recordings of large-scale brain activity in freely moving rhesus monkeys // Nat. Methods. 2014. 11 (6). P. 670-676.
  • Sefcik et al. (2016) — SefcikR.K., N.L. Opie, S.E. John, C.P. Kellner, J. Mocco, T. J. Oxley. The evolution of endovascular electroencephalography: historical perspective and future applications // Neurosurgical focus. 2016. 40 (5). E7.
  • Sellers et al. (2006) — Sellers E. W., D.J. Krusienski, D.J. McFarland, T.M. Vaughan, J. R. Wolpaw. A P300 event-related potential brain-computer interface (BCI): the effects of matrix size and inter stimulus interval on performance // Biol. Psychol. 2006. 73 (3). P. 242-252.
  • Seo et al. (2015) — Seo D., J.M. Carmena, J.M.Rabaey, M.M.Maharbiz, E. Alon. Model validation of untethered, ultrasonic neural dust motes for cortical recording // J. Neurosci Methods. 2015. 244. P. 114-122.
  • Seo et al. (2016) — Seo D., R.M. Neely K. Shen, U. Singhal, E. Alon, J.M. Rabaey J.M. Carmena, M.M. Maharbiz. Wireless Recording in the Peripheral Nervous System with Ultrasonic Neural Dust // Neuron. 91 (3). P. 529-539.
  • Serruya et al. (2002) — Serruya M.D., N. G. Hatsopoulos, L. Paninski, M.R. Fellows, J.P. Donoghue. Instant neural control of a movement signal // Nature. 2002. 416 (6877). P. 141-142.
  • Serruya et al. (2003) — Serruya M., A. Shaikhouni, J. Donoghue. Neural decoding of cursor motion using a Kalman filter // Advances in Neural Information Processing Systems 15: Proceedings of the 2002 Conference, MIT Press, 2003.
  • Shanechi et al. (2014) - Shanechi M. M., R. C. Hu, Z. M. Williams. A cortical-spinal prosthesis for targeted limb movement in paralysed primate avatars // Nature communications. 2014. 5.
  • Shenoy et al. (2003) — ShenoyK.V., D. Meeker, S. Cao, S.A. Kureshi, B. Pesaran, C. A. Buneo, A. P. Batista, P. P. Mitra, J. W. Burdick, R. A. Andersen. Neural prosthetic control signals from plan activity // Neuroreport. 2003. 14 (4). P. 591-596.
  • Sherrington (1906) — Sherrington C.S. The integrative action of the nervous system. New York, C. Scribner's sons, 1906.
  • Shokur et al. (2016) — Shokur S., S. Gallo, R. C. Moioli, A. R. Donati, E. Morya, H. Bleuler, M. A. Nicolelis. Assimilation of virtual legs and perception of floor texture by complete paraplegic patients receiving artificial tactile feedback // Sci. Rep. 2016.
  • Simmons et al. (1964) — Simmons F. B., C. J. Mongeon, W. R. Lewis, D. A. Huntington. Electrical Stimulation of Acoustical Nerve and Inferior Colliculus // Arch Otolaryngol. 1964. 79. P. 559-568.
  • Sitaram et al. (2007) — Sitaram R., A. Caria, R. Veit, T. Gaber, G. Rota, A. Kuebler, N. Birbaumer. FMRI brain-computer interface: a tool for neuroscientific research and treatment // Comput Intell Neurosci. 2007. P. 25487.
  • Sitaram et al. (2009) — Sitaram R., A. Caria, N. Birbaumer. Hemodynamic brain-computer interfaces for communication and rehabilitation // Neural networks. 2009. 22.(9). P. 1320-1328.
  • Smetters et al. (1999) — Smetters D., A. Majewska, R. Yuste. Detecting action potentials in neuronal populations with calcium imaging // Methods. 1999. 18 (2). P. 215-221.
  • Stevenson, Kording (2011) — Stevenson I. H., Kording K. P. How advances in neural recording affect data analysis // Nat. Neurosci. 2011. 14 (2). P. 139-142.
  • Stosiek et al. (2003) — Stosiek C., O. Garaschuk, K. Holthoff, A. Konnerth. In vivo two-photon calcium imaging of neuronal networks // Proceedings of the National Academy of Sciences. 2003. 100 (12). P. 7319-7324.
  • Strangman et al. (2002) — Strangman G., J.P. Culver, J.H. Thompson, D.A. Boas. A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation // Neuroimage. 2002. 17 (2). P. 719-731.
  • Suykens, Vandewalle (1999) — Suykens J.A., Vandewalle J. Least squares support vector machine classifiers // Neural processing letters. 1999. 9 (3). P. 293-300.
  • Svoboda, Yasuda (2006) — Svoboda K., Yasuda R. Principles of two-photon excitation microscopy and its applications to neuroscience // Neuron. 2006. 50 (6). P. 823-839.
  • Tabot et al. (2013) — Tabot G.A., J.F.Dammann, J.A.Berg, F.V. Tenore, J. L. Boback, R. J. Vogelstein, S. J. Bensmaia. Restoring the sense of touch with a prosthetic hand through a brain interface // Proceedings of the National Academy of Sciences. 2013. 110 (45). P. 18279-18284.
  • Tan et al. (2014) — Tan D.W., M.A. Schiefer, M.W.Keith, J.R. Anderson, J. Tyler, D. J. Tyler. A neural interface provides long-term stable natural touch perception // Science translational medicine. 2014. 6 (257). P. 257ra138-257ra138.
Еще
Статья научная