Старение и омоложение резидентных стволовых клеток - новый путь к активному долголетию?

Автор: Баклаушев Владимир Павлович, Самойлова Екатерина Михайловна, Кальсин Владимир Анатольевич, Юсубалиева Гаухар Маратовна

Журнал: Клиническая практика @clinpractice

Рубрика: Обзоры

Статья в выпуске: 1 т.13, 2022 года.

Бесплатный доступ

В обзоре представлены современные данные о методологии оценки биологического и эпигенетического возраста; описана концепция эпигенетических часов; охарактеризованы основные виды резидентных стволовых клеток и особенности их старения. Показано, что возрастные изменения органов и тканей, а также ассоциированные с возрастом заболевания во многом обусловлены старением резидентных стволовых клеток. Последние представляют собой привлекательную мишень для клеточного омоложения, поскольку могут быть отобраны, культивированы ex vivo, модифицированы и вновь возвращены в резидентные ниши. Основные методологии клеточного омоложения включают генетическое репрограммирование с «обнулением» возраста клетки с помощью транзиторной экспрессии транскрипционных факторов, а также различные подходы к эпигенетическому омоложению, путем изменения генетической экспрессии про- и антивозрастных факторов, модулирования клеточного метаболизма. Тесная взаимосвязь старения, регенерации и онкогенеза между собой и с функционированием ниш резидентных стволовых клеток требует дальнейших прецизионных исследований, результатом которых, мы уверены, может стать создание эффективной стратегии антиэйджинга и продления активной жизни человека.

Еще

Резидентные стволовые клетки, старение, репрограммирование, омоложение, эпигенетические часы

Короткий адрес: https://sciup.org/143178548

IDR: 143178548

Список литературы Старение и омоложение резидентных стволовых клеток - новый путь к активному долголетию?

  • Atlantis E, Martin SA, Haren MT, et al.; Florey Adelaide Male Aging Study. Lifestyle factors associated with age-related differences in body composition: the Florey Adelaide Male Aging Study. Am J Clin Nutr. 2008;88(1):95-104. doi: 10.1093/ajcn/88.1.95
  • Haynes L, Maue AC. Effects of aging on T cell function. Curr Opin Immunol. 2009;21(4):414-417. doi: 10.1016/j.coi.2009.05.009
  • Samson RD, Barnes CA. Impact of aging brain circuits on cognition. Eur J Neurosci. 2013;37(12):1903-1915. doi: 10.1111/ejn.12183
  • Samoilova EM, Belopasov VV, Ekusheva EV, et al. Epigenetic clock and circadian rhythms in stem cell aging and rejuvenation. J Pers Med. 2021;(11):1050. doi: 10.3390/jpm11111050
  • Hannum G, Guinney J, Zhao L, et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell. 2013;49(2):359-367. doi: 10.1016/j.molcel.2012.10.016
  • Horvath S. DNA methylation age of human tissues and cell types [published correction appears in Genome Biol. 2015;16:96]. Genome Biol. 2013;14(10):R115. doi: 10.1186/gb-2013-14-10-r115
  • Field AE, Robertson NA, Wang T, et al. DNA methylation clocks in aging: categories, causes, and consequences. Mol Cell. 2018;71(6):882-895. doi: 10.1016/j.molcel.2018.08.008
  • Horvath S, Raj K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat Rev Genet. 2018;19(6): 371-384. doi: 10.1038/s41576-018-0004-3
  • Lopez-Otfn C, Blasco MA, Partridge L, et al. The hallmarks of aging. Cell. 2013;153(6):1194-1217. doi: 10.1016/j.cell.2013.05.039
  • Teschendorff AE, Menon U, Gentry-Maharaj A, et al. Age-dependent DNA methylation of genes that are suppressed in stem cells is a hallmark of cancer. Genome research. 2010;20(4):440-446. doi: 10.1101/gr.103606.109
  • Lister R, Pelizzola M, Dowen RH, et al. Human DNA methy-lomes at base resolution show widespread epigenomic differences. Nature. 2009;462(7271):315-322. doi: 10.1038/nature08514
  • Rose NR, Klose RJ. Understanding the relationship between DNA methylation and histone lysine methylation. Biochim Biophys Acta. 2014;1839(12):1362-1372. doi: 10.1016/j.bbagrm.2014.02.007
  • Reddington JP, Perricone SM, Nestor CE, et al. Redistribution of H3K27me3 upon DNA hypomethylation results in de-repression of Polycomb target genes. Genome Biology. 2013;14(3):R25. doi: 10.1186/gb-2013-14-3-r25
  • Berger SL, Sassone-Corsi P. Metabolic signaling to chromatin. Cold Spring Harb. Perspect Biol. 2016;8(11):1-63. doi: 10.1101/cshperspect.a019463
  • Bocklandt S, Lin W, Sehl ME, et al. Epigenetic predictor of age. PLoS One. 2011;6(6):e14821. doi: 10.1371/journal.pone.0014821
  • Levine ME, Lu AT, Quach A, et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging. 2018;10(4):573-591. doi: 10.18632/aging.101414
  • Consortium MM, Lu AT, Fei Z, et al. Universal DNA methylation age across mammalian tissues. BioRxiv. 2021. doi: 2021.01.18.426733
  • Lu AT, Quach A, Wilson JG, et al. DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging. 2019;11(2): 303-327. doi: 10.18632/aging.101684
  • Lu Y, Brommer B, Tian X, et al. Reprogramming to recover youthful epigenetic information and restore vision. Nature. 2020; 588(7836): 124-129. doi: 10.1038/s41586-020-2975-4
  • Trapp A, Kerepesi C, Gladyshev VN. Profiling epigenetic age in single cells. BioRxiv. 2021. doi: 10.1101/2021.03.13.435247
  • Fahy GM, Brooke RT, Watson JP, et al. Reversal of epigenetic aging and immunosenescent trends in humans. Aging Cell. 2019;18(6):e13028. doi: 10.1111/acel.13028
  • Horvath S, Singh K, Raj K, et al. Reversing age: dual species measurement of epigenetic age with a single clock. BioRxiv. 2020. doi: 10.1101/2020.05.07.082917
  • Schultz MB, Sinclair DA. When stem cells grow old: phenotypes and mechanisms of stem cell aging. Development. 2016;143(1):3-14. doi: 10.1242/dev.130633
  • Dykstra B, Olthof S, Schreuder J, et al. Clonal analysis reveals multiple functional defects of aged murine hematopoietic stem cells. J Exp Med. 2011;208(13):2691-2703. doi: 10.1084/jem.20111490
  • Beerman I, Bhattacharya D, Zandi S, et al. Functionally distinct hematopoietic stem cells modulate hematopoietic lineage potential during aging by a mechanism of clonal expansion. Proc Natl Acad Sci USA. 2010;107(12):5465-5470. doi: 10.1073/pnas.1000834107
  • Jaiswal S, Fontanillas P, Flannick J, et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med. 2014;371(26):2488-2498. doi: 10.1056/NEJMoa1408617
  • Rossi DJ, Bryder D, Zahn JM, et al. Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc Natl Acad Sci USA. 2005;102(26):9194-9199. doi: 10.1073/pnas.0503280102
  • Linton PJ, Dorshkind K. Age-related changes in lymphocyte development and function. Nat Immunol. 2004;5(2): 133-139. doi: 10.1038/ni1033
  • Lichtman MA, Rowe JM. The relationship of patient age to the pathobiology of the clonal myeloid diseases. Semin Oncol. 2004;31(2):185-197. doi: 10.1053/j.seminoncol.2003.12.029
  • Mareschi K, Ferrero I, Rustichelli D, et al. Expansion of mesenchymal stem cells isolated from pediatric and adult donor bone marrow. J Cell Biochem. 2006;97(4):744-754. doi: 10.1002/jcb.20681
  • Musina RA, Bekchanova ES, Sukhikh GT. Comparison of mesenchymal stem cells obtained from different human tissues. Bull Exp Biol Med. 2005;139(4):504-509. doi: 10.1007/s10517-005-0331-1
  • Bruder SP, Jaiswal N, Haynesworth SE. Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem. 1997;64(2):278-294. doi: 10.1002/(sici)1097-4644(199702)64:2-278::aid-jcb11 >3.0.co;2-f
  • Watanabe S, Kawamoto S, Ohtani N, Hara E. Impact of senescence-associated secretory phenotype and its potential as a therapeutic target for senescence-associated diseases. Cancer Sci. 2017; 108(4):563-569. doi: 10.1111/cas.13184
  • Noren HN, Evans MK. Techniques to induce and quantify cellular senescence. J Vis Exp. 2017;(123):55533. doi: 10.3791/55533
  • Zhai W, Yong D, El-Jawhari JJ, et al. Identification of senescent cells in multipotent mesenchymal stromal cell cultures: current methods and future directions. Cytotherapy. 2019;21(8): 803-819. doi: 10.1016/j.jcyt.2019.05.001
  • Biteau B, Hochmuth CE, Jasper H. JNK activity in somatic stem cells causes loss of tissue homeostasis in the aging Drosophila gut. Cell Stem Cell. 2008;3(4):442-455. doi: 10.1016/j.stem.2008.07.024
  • Choi NH, Kim JG, Yang DJ, et al. Age-related changes in Drosophila midgut are associated with PVF2, a PDGF/ VEGF-like growth factor. Aging Cell. 2008;7(3):318-334. doi: 10.1111/j.1474-9726.2008.00380.x
  • Takeda N, Jain R, LeBoeuf MR, et al. Interconversion between intestinal stem cell populations in distinct niches. Science. 2011;334(6061):1420-1424. doi: 10.1126/science.1213214
  • Martin K, Potten CS, Roberts SA, Kirkwood TB. Altered stem cell regeneration in irradiated intestinal crypts of senescent mice. J Cell Sci. 1998;111(Pt 16):2297-2303.
  • Merlos-Suarez A, Barriga FM, Jung P, et al. The intestinal stem cell signature identifies colorectal cancer stem cells and predicts disease relapse. Cell Stem Cell. 2011;8(5):511-524. doi: 10.1016/j.stem.2011.02.020
  • Sherwood RI, Christensen JL, Conboy IM, et al. Isolation of adult mouse myogenic progenitors: functional heterogeneity of cells within and engrafting skeletal muscle. Cell. 2004;119(4):543-554. doi: 10.1016/j.cell.2004.10.021
  • Beauchamp JR, Morgan JE, Pagel CN, Partridge TA. Dynamics of myoblast transplantation reveal a discrete minority of precursors with stem cell-like properties as the myogenic source. J Cell Biol. 1999;144(6): 1113-1122. doi: 10.1083/jcb.144.6.1113
  • Brack AS, Bildsoe H, Hughes SM. Evidence that satellite cell decrement contributes to preferential decline in nuclear number from large fibres during murine age-related muscle atrophy. J Cell Sci. 2005;118(Pt 20):4813-4821. doi: 10.1242/jcs.02602
  • Collins CA, Zammit PS, Ruiz AP, et al. A population of myogenic stem cells that survives skeletal muscle aging. Stem Cells. 2007;25(4):885-894. doi: 10.1634/stemcells.2006-0372
  • Bernet JD, Doles JD, Hall JK, et al. p38 MAPK signaling underlies a cell-autonomous loss of stem cell self-renewal in skeletal muscle of aged mice. Nat Med. 2014;20(3):265-271. doi: 10.1038/nm.3465
  • Cosgrove BD, Gilbert PM, Porpiglia E, et al. Rejuvenation of the muscle stem cell population restores strength to injured aged muscles. Nat Med. 2014;20(3):255-264. doi: 10.1038/nm.3464
  • Sousa-Victor P, Gutarra S, Garcia-Prat L, et al. Geriatric muscle stem cells switch reversible quiescence into senescence. Nature. 2014;506(7488):316-321. doi: 10.1038/nature13013
  • Brack AS, Conboy MJ, Roy S, et al. Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science. 2007;317(5839):807-810. doi: 10.1126/science.1144090
  • Carlson ME, Conboy MJ, Hsu M, et al. Relative roles of TGF-beta1 and WNT in the systemic regulation and aging of satellite cell responses. Aging Cell. 2009;8(6):676-689. doi: 10.1111/j.1474-9726.2009.00517.x
  • Conboy IM, Conboy MJ, Smythe GM, Rando TA. Notch-mediated restoration of regenerative potential to aged muscle. Science. 2003;302(5650):1575-1577. doi: 10.1126/science.1087573
  • Sinha M, Jang YC, Oh J, et al. Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle. Science. 2014;344(6184):649-652. doi: 10.1126/science.1251152
  • Price FD, von Maltzahn J, Bentzinger CF, et al. Inhibition of JAK-STAT signaling stimulates adult satellite cell function [published correction appears in Nat Med. 2014 0ct;(10):1217]. Nat Med. 2014;20(10):1174-1181. doi: 10.1038/nm.3655
  • Jurkowski MP, Bettio LK, Woo E, et al. Beyond the hippocampus and the SVZ: adult neurogenesis throughout the brain. Front Cell Neurosci. 2020;14:576444. doi: 10.3389/fncel.2020.576444
  • Basak O, Krieger TG, Muraro MJ, et al. Troy+ brain stem cells cycle through quiescence and regulate their number by sensing niche occupancy. Proc Natl Acad Sci USA. 2018;115(4):E610-E619. doi: 10.1073/pnas.1715911114
  • I brayeva A, Bay M, Pu E, et al. Early stem cell aging in the mature brain. Cell Stem. 2021;28(5):955-966.e7. doi: 10.1016/j.stem.2021.03.018
  • Urban N, Blomfield IM, Guillemot F. Quiescence of adult mammalian neural stem cells: a highly regulated rest. Neuron. 2019;104(5):834-848. doi: 10.1016/j.neuron.2019.09.026
  • Kalamakis G, Brüne D, Ravichandran S, et al. Quiescence modulates stem cell maintenance and regenerative capacity in the aging brain. Cell. 2019;176(6):1407-1419.e14. doi: 10.1016/j.cell.2019.01.040
  • Smith LK, He Y, Park JS, et al. ß2-Microglobulin is a systemic pro-aging factor that impairs cognitive function and neuro-genesis. Nat Med. 2015;21:932-937.
  • Pineda JR, Daynac M, Chicheportiche A, et al. Vascular-derived TGF-ß increases in the stem cell niche and perturbs neurogenesis during aging and following irradiation in the adult mouse brain. EMBO Mol Med. 2013;5(4):548-562. doi: 10.1002/emmm.201202197
  • Villeda SA, Plambeck KE, Middeldorp J, et al. Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice. Nat Med. 2014;20(6):659-663. doi: 10.1038/nm.3569
  • Okamoto M, Inoue K, Iwamura H, et al. Reduction in paracrine Wnt3 factors during aging causes impaired adult neurogenesis. FASEB J. 2011;25(10):3570-3582. doi: 10.1096/fj.11-184697
  • Dulken BW, Buckley MT, Navarro NP, et al. Single-cell analysis reveals T cell infiltration in old neurogenic niches. Nature. 2019;571(7764):205-210. doi: 10.1038/s41586-019-1362-5
  • Leeman DS, Hebestreit K, Ruetz T, et al. Lysosome activation clears aggregates and enhances quiescent neural stem cell activation during aging. Science. 2018;359(6381):1277-1283. doi: 10.1126/science.aag3048
  • Spalding KL, Bergmann O, Alkass K, et al. Dynamics of hippocampal neurogenesis in adult humans. Cell. 2013;153(6): 1219-1227. doi: 10.1016/j.cell.2013.05.002
  • Sorrells SF, Paredes MF, Cebrian-Silla A, et al. Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature. 2018;555(7696):377-381. doi: 10.1038/nature25975
  • Dennis CV, Suh LS, Rodriguez ML, et al. Human adult neurogenesis across the ages: an immunohistochemical study. Neuropathol Appl Neurobiol. 2016;42(7):621-638. doi: 10.1111/nan.12337
  • Keyes BE, Segal JP, Heller E, et al. Nfatc1 orchestrates aging in hair follicle stem cells. Proc Natl Acad Sci USA. 2013; 110(51):E4950-E4959. doi: 10.1073/pnas.1320301110
  • Rittié L, Stoll SW, Kang S, et al. Hedgehog signaling maintains hair follicle stem cell phenotype in young and aged human skin. Aging Cell. 2009;8(6):738-751. doi: 10.1111/j.1474-9726.2009.00526.x
  • Nishimura EK. Melanocyte stem cells: a melanocyte reservoir in hair follicles for hair and skin pigmentation. Pigment Cell Melanoma Res. 2011;24(3):401-410. doi: 10.1111/j.1755-148X.2011.00855.x
  • I nomata K, Aoto T, Binh NT, et al. Genotoxic stress abrogates renewal of melanocyte stem cells by triggering their differentiation. Cell. 2009;137(6): 1088-1099. doi: 10.1016/j.cell.2009.03.037
  • Paul C, Nagano M, Robaire B. Aging results in molecular changes in an enriched population of undifferentiated rat spermatogonia. Biol Reprod. 2013;89(6):147. doi: 10.1095/biolreprod.113.112995
  • Zhang X, Ebata KT, Robaire B, Nagano MC. Aging of male germ line stem cells in mice. Biol Reprod. 2006;74(1):119-124. doi: 10.1095/biolreprod.105.045591
  • Antonio-Rubio NR, Porras-Gómez TJ, Moreno-Mendoza N. Identification of cortical germ cells in adult ovaries from three phyllostomid bats: artibeus jamaicensis, glossophaga soricina and sturnira lilium. Reprod Fertil Dev. 2013;25(5):825-836. doi: 10.1071/RD12126
  • Inserra PI, Leopardo NP, Willis MA, et al. Quantification of healthy and atretic germ cells and follicles in the developing and post-natal ovary of the South American plains vizcacha, lagostomus maximus: evidence of continuous rise of the germinal reserve. Reproduction. 2013;147(2):199-209. doi: 10.1530/REP-13-0455
  • Hernandez SF, Vahidi NA, Park S, et al. Characterization of extracellular DDX4-or Ddx4-positive ovarian cells. Nat Med. 2015;21(10):1114-1116. doi: 10.1038/nm.3966
  • Zhang Y, Yang Z, Yang Y, et al. Production of transgenic mice by random recombination of targeted genes in female germline stem cells. J Mol Cell Biol. 2011;3(2):132-141. doi: 10.1093/jmcb/mjq043
  • White YA, Woods DC, Takai Y, et al. Oocyte formation by mitotically active germ cells purified from ovaries of reproductive-age women. Nat Med. 2012;18(3):413-421. doi: 10.1038/nm.2669
  • Zhang H, Liu L, Li X, et al. Life-long in vivo cell-lineage tracing shows that no oogenesis originates from putative germline stem cells in adult mice. Proc Natl Acad Sci USA. 2014;111(50): 17983-17988. doi: 10.1073/pnas.1421047111
  • Zhang H, Panula S, Petropoulos S, et al. Adult human and mouse ovaries lack DDX4-expressing functional oogonial stem cells. Nat Med. 2015;21(10):1116-1118. doi: 10.1038/nm.3775
  • Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663-676. doi: 10.1016/j.cell.2006.07.024
  • Samoylova EM, Baklaushev VP. Cell reprogramming preserving epigenetic age: advantages and limitations. Biochemistry (Mosc). 2020;85(9):1035-1047. doi: 10.1134/S0006297920090047
  • Buganim Y, Faddah DA, Cheng AW, et al. Single-cell expression analyses during cellular reprogramming reveal an early stochastic and a late hierarchic phase. Cell. 2012;150(6):1209-1222. doi: 10.1016/j.cell.2012.08.023
  • Polo JM, Anderssen E, Walsh RM, et al. A molecular roadmap of reprogramming somatic cells into iPS cells. Cell. 2012;151(7):1617-1632. doi: 10.1016/j.cell.2012.11.039
  • Hansson J, Rafiee MR, Reiland S, et al. Highly coordinated proteome dynamics during reprogramming of somatic cells to pluripotency. Cell Rep. 2012;2(6):1579-1592. doi: 10.1016/j.celrep.2012.10.014
  • Olova N, Simpson DJ, Marioni RE, Chandra T. Partial reprogramming induces a steady decline in epigenetic age before loss of somatic identity. Aging Cell. 2019;18(1):e12877. doi: 10.1111/acel.12877
  • Ocampo A, Reddy P, Martinez-Redondo P, et al. In vivo amelioration of age-associated hallmarks by partial reprogramming. Cell. 2016;167(7):1719-1733.e12. doi: 10.1016/j.cell.2016.11.052
  • Sheng C, Jungverdorben J, Wiethoff H, et al. A stably self-renewing adult blood-derived induced neural stem cell exhibiting patternability and epigenetic rejuvenation. Nature Com. 2018; 9(1):4047. doi: 10.1038/s41467-018-06398-5
  • Marion RM, Strati K, Li H, et al. Telomeres acquire embryonic stem cell characteristics in induced pluripotent stem cells. Cell Stem Cell. 2009;4(2):141-154. doi: 10.1016/j.stem.2008.12.010
  • Prigione A, Fauler B, Lurz R, et al. The senescence-related mitochondrial/oxidative stress pathway is repressed in human induced pluripotent stem cells. Stem Cells. 2010;28(4):721-733. doi: 10.1002/stem.404
  • Suhr ST, Chang EA, Tjong J, et al. Mitochondrial rejuvenation after induced pluripotency. PloS One. 2010;5(11):e14095. doi: 10.1371/journal.pone.0014095
  • Abad M, Mosteiro L, Pantoja C, et al. Reprogramming in vivo produces teratomas and iPS cells with totipotency features. Nature. 2013;502(7471):340-345. doi: 10.1038/nature12586
  • Sarkar TJ, Quarta M, Mukherjee S, et al. Transient non-integrative expression of nuclear reprogramming factors promotes multifaceted amelioration of aging in human cells. Nat Commun. 2020;11(1):1545. doi: 10.1038/s41467-020-15174-3
  • Gill D, Parry A, Santos F, et al. Multi-omic rejuvenation of human cells by maturation phase transient reprogramming. BioRxiv. 2021.01.15.426786. doi: 10.1101/2021.01.15.426786
  • Mareschi K, Ferrero I, Rustichelli D, et al. Expansion of mesenchymal stem cells isolated from pediatric and adult donor bone marrow. J Cell Biochem. 2006;97(4):744-754. doi: 10.1002/jcb.20681
  • Madrigal M, Rao KS, Riordan NH. A review of therapeutic effects of mesenchymal stem cell secretions and induction of secretory modification by different culture methods. J Transl Med. 2014;12:260. doi: 10.1186/s12967-014-0260-8
  • Childs BG, Li H, van Deursen JM. Senescent cells: a therapeutic target for cardiovascular disease. J Clin Invest. 2018; 128(4):1217-1228. doi: 10.1172/JCI95146
  • Landgraf K, Brunauer R, Lepperdinger G, Grubeck-Loebenstein B. The suppressive effect of mesenchymal stromal cells on T cell proliferation is conserved in old age. Transpl Immunol. 2011;25(2-3):167-172. doi: 10.1016/j.trim.2011.06.007
  • Zhang J, Lv S, Liu X, et al. Umbilical cord mesenchymal stem cell treatment for Crohn's disease: a randomized controlled clinical trial. Gut Liver. 2018;12(1):73-78. doi: 10.5009/gnl17035
  • Al Demour S, Jafar H, Adwan S, et al. Safety and potential therapeutic effect of two intracavernous autologous bone marrow derived mesenchymal stem cells injections in diabetic patients with erectile dysfunction: an open label phase I clinical trial. Urol Int. 2018;101(3):358-365. doi: 10.1159/000492120
  • Iacobaeus E, Kadri N, Lefsihane K, et al. Short and long term clinical and immunologic follow up after bone marrow mesenchymal stromal cell therapy in progressive multiple sclerosis-A phase I study. J Clin Med. 2019;8(12):2102. doi: 10.3390/jcm8122102
  • Gyöngyösi M, Wojakowski W, Lemarchand P, et al. Meta-Analysis of Cell-based CaRdiac stUdiEs (ACCRUE) in patients with acute myocardial infarction based on individual patient data. Circ Res. 2015;116(8): 1346-1360. doi: 10.1161/CIRCRESAHA.116.304346
  • Abdelmohsen K, Gorospe M. Noncoding RNA control of cellular senescence. Wiley Interdiscip Rev RNA. 2015;6(6):615-629. doi: 10.1002/wrna.1297
  • Ocansey DK, Pei B, Yan Y, et al. Improved therapeutics of modified mesenchymal stem cells: an update. J Transl Med. 2020;18(1):42. doi: 10.1186/s12967-020-02234-x
  • Zhou X, Hong Y, Zhang H, Li X. Mesenchymal stem cell senescence and rejuvenation: current status and challenges. Front Cell Dev Biol. 2020;8:364. doi: 10.3389/fcell.2020.00364
  • 105.Spitzhorn LS, Megges M, Wruck W, et al. Human iPSC-derived MSCs (iMSCs) from aged individuals acquire a rejuvenation signature. Stem Cell Res Ther. 2019;10(1):100. doi: 10.1186/s13287-019-1209-x
  • Göbel C, Goetzke R, Eggermann T, Wagner W. Interrupted reprogramming into induced pluripotent stem cells does not rejuvenate human mesenchymal stromal cells. Sci Rep. 2018;8(1):11676. doi: 10.1038/s41598-018-30069-6
  • 107.Fernandez-Rebollo E, Franzen J, Goetzke R, et al. Senescence-associated metabolomic phenotype in primary and iPSC-derived mesenchymal stromal cells. Stem Cell Reports. 2020;14(2):201-209. doi: 10.1016/j.stemcr.2019.12.01
  • Liang C, Liu Z, Song M, et al. Stabilization of heterochromatin by CLOCK promotes stem cell rejuvenation and cartilage regeneration. Cell Res. 2021;31(2):187-205. doi: 10.1038/s41422-020-0385-7
  • Jiao H, Walczak BE, Lee MS, et al. GATA6 regulates aging of human mesenchymal stem/stromal cells. Stem Cells. 2021; 39(1):62-77. doi: 10.1002/stem.3297
  • O'Kane GM, Grunwald BT, Jang GH, et al. GATA6 expression distinguishes classical and basal-like subtypes in advanced pancreatic cancer. Clin Cancer Res. 2020;26(18): 4901-4910. doi: 10.1158/1078-0432.CCR-19-3724
  • Fu L, Hu Y, Song M, et al. Up-regulation of FOXD1 by YAP alleviates senescence and osteoarthritis. PLoS Biol. 2019; 17(4):e3000201. doi: 10.1371/journal.pbio.3000201
  • 112.Deng L, Ren R, Liu Z, et al. Stabilizing heterochromatin by DGCR8 alleviates senescence and osteoarthritis. Nat Commun. 2019;10(1):3329. doi: 10.1038/s41467-019-10831-8
  • Ren X, Hu B, Song M, et al. Maintenance of nucleolar homeostasis by CBX4 alleviates senescence and osteoarthritis. Cell Rep. 2019;26(13):3643-3656.e7. doi: 10.1016/j.celrep.2019.02.088
  • 114.So AY, Jung JW, Lee S, et al. DNA methyltransferase controls stem cell aging by regulating BMI1 and EZH2 through microRNAs. PLoS One. 2011;6(5):e19503. doi: 10.1371/journal.pone.0019503
  • Kornicka K, Marycz K, Mar^dziak M, et al. The effects of the DNA methyltranfserases inhibitor 5-Azacitidine on ageing, oxidative stress and DNA methylation of adipose derived stem cells. J Cell Mol Med. 2017;21(2):387-401. doi: 10.1111/jcmm.12972
  • Yang M, Teng S, Ma C, et al. Ascorbic acid inhibits senescence in mesenchymal stem cells through ROS and AKT/ mTOR signaling. Cytotechnology. 2018;70(5):1301-1313. doi: 10.1007/s10616-018-0220-x
  • Park SY, Jeong AJ, Kim GY, et al. Lactoferrin protects human mesenchymal stem cells from oxidative stress-induced senescence and apoptosis. J Microbiol Biotechnol. 2017;27(10):1877-1884. doi: 10.4014/jmb.1707.07040
  • Lee JH, Jung HK, Han YS, et al. Antioxidant effects of Cirsium setidens extract on oxidative stress in human mesenchymal stem cells. Mol Med Rep. 2016;14(4):3777-3784. doi: 10.3892/mmr.2016.5706
  • Lee JH, Yoon YM, Song KH, et al. Melatonin suppresses senescence-derived mitochondrial dysfunction in mesenchymal stem cells via the HSPA1L-mitophagy pathway. Aging Cell. 2020; 19(3):e13111. doi: 10.1111/acel.13111
  • Seok J, Jung HS, Park S, et al. Alteration of fatty acid oxidation by increased CPT1A on replicative senescence of placenta-derived mesenchymal stem cells. Stem Cell Res Ther. 2020; 11(1):1. doi: 10.1186/s13287-019-1471-y
  • Li X, Hong Y, He H, et al. FGF21 mediates mesenchymal stem cell senescence via regulation of mitochondrial dynamics. Oxid Med Cell Longev. 2019;2019:4915149. doi: 10.1155/2019/4915149
  • 122.Zhang Y, Xu J, Liu S, et al. Embryonic stem cell-derived extracellular vesicles enhance the therapeutic effect of mesenchymal stem cells. Theranostics. 2019;9(23):6976-6990. doi: 10.7150/thno.35305
  • Chen B, Sun Y, Zhang J, et al. Human embryonic stem cell-derived exosomes promote pressure ulcer healing in aged mice by rejuvenating senescent endothelial cells. Stem Cell Res Ther. 2019;10(1):142. doi: 10.1186/s13287-019-1253-6
  • Khanh VC, Yamashita T, Ohneda K, et al. Rejuvenation of mesenchymal stem cells by extracellular vesicles inhibits the elevation of reactive oxygen species. Sci Rep. 2020;10(1):17315. doi: 10.1038/s41598-020-74444-8
Еще
Статья обзорная