Structure of archimedean f-rings
Автор: Kusraev Anatoly G., Tasoev Batradz B.
Журнал: Владикавказский математический журнал @vmj-ru
Статья в выпуске: 4 т.23, 2021 года.
Бесплатный доступ
It is proved that the Boolean valued representation of a Dedekind complete f-ring is either the group of integers with zero multiplication, or the ring of integers, or the additive groups of reals with zero multiplication, or the ring of reals. Correspondingly, the Dedekind completion of an Archimedean f-ring admits a decomposition into the direct sum of for polars: singular ℓ-group and an erased vector lattice, both with zero multiplication, a singular f-rings and an erased f-algebra. A corollary on a functional representation of universally complete f-rings is also given.
Vector lattice, f-ring, f-algebra, boolean valued representation, singular f-ring
Короткий адрес: https://sciup.org/143177813
IDR: 143177813 | DOI: 10.46698/y9119-0112-6583-w
Список литературы Structure of archimedean f-rings
- Aliprantis, C. D. and Burkinshaw, O. Positive Operators, New York, Acad. Press, 1985.
- Birkhoff, G. Lattice Theory, Amer. Math. Soc. Colloq. Publ., no. 25, Providence, Rhoude Island, 1967.
- Kusraev, A. G. and Kutateladze, S. S. Boolean Valued Analysis, Dordrecht, Kluwer Academic Publishers, 1999.
- Kusraev, A. G. and Kutateladze, S. S. Erased Kantorvich Spaces, Siberian Mathematical Journal, 2022, vol. 63, no. 1.
- Johnson, D. G. The Completion of an Archimedean f-Ring, Journal of the London Mathematical Society, 1965, vol. 40, pp. 493-496.