Структурная модель образования микротяжей при деформировании наполненных эластомеров

Бесплатный доступ

Разработана структурная модель развития внутренней поврежденности в дисперсно наполненных эластомерах в виде высокопрочных микротяжей между частицами наполнителя. В основе модели лежит использование нового деформационного критерия прочности, учитывающего возможность анизотропного упрочнения эластомера при вытяжке (за счет переориентации молекулярных цепей в направлении приложения нагрузки). Предложено четыре формы записи этого критерия и после анализа их применимости выбран оптимальный вариант. С помощью модели теоретически исследованы процессы развития структурной поврежденности в эластомерных композитах. Показано, что данный подход позволяет описать возможность возникновения тяжей в зазорах между близко расположенными частицами наполнителя за счет развития в материале прочностной анизотропии.

Еще

Эластомер, дисперсный наполнитель, структурная поврежденность, критерии разрушения

Короткий адрес: https://sciup.org/147245466

IDR: 147245466   |   DOI: 10.17072/1993-0550-2019-4-5-12

Список литературы Структурная модель образования микротяжей при деформировании наполненных эластомеров

  • Shakun A., Vuorinen J., HoikanenN M., Poikelispaa M., Das A. Hard nanodiamonds in soft rubbers: past, present and future - a review // Composites Part A: Applied science and manufacturing. 2014. Vol. 64. P. 49-69.
  • Le H.H., Pham T., Henning S., Klehm J., Wießner S., Stöckelhuber S., Das A., Hoang X.T., Do Q.K., Wu M., Vennemann N., Heinrich G., Radusch G. Formation and stability of carbon nanotube network in natural rubber: Effect of non-rubber components // Polymer. 2015. Vol. 73. P. 111-121.
  • Lua Y., Liua J., Houa G., Mac J., Wanga W., Weid F., Zhanga L. From nano to giant? Designing carbon nanotubes for rubber reinforcement and their applications for high performance tires // Composites Science and Technology. 2016. Vol. 137. P. 94-101.
  • Mokhireva K.A., Svistkov A.L., Solod'ko V.N., Komar L.A., Stöckelhuber K.W. Experimental analysis of the effect of carbon nanoparticles with different geometry on the appearance of anisotropy of mechanical properties in elastomeric composites // Polymer Testing. 2017. Vol. 59. P. 46-54.
  • Huili L., Hongwei B., Dongyu B., Zhenwei L., Qin Z., Qiang F. Design of high-performance poly(L-lactide)/elastomer blends through anchoring carbon nanotubes at the interface with the aid of stereo-complex crystallization // Polymer. 2017. Vol. 108. P. 38-49.
  • Das A., Wang D.-Y., Stöckelhuber K.W., Jurk R., Fritzsche J., Klüppel M., Heinrich G. Rubber-Clay Nanocomposites: Some Recent Facts // Advances in Polymer Science. 2011. Vol. 239. P. 85-166.
  • Das A., Stöckelhuber K.W., Jurk R., Jehnichen D., Heinrich G. A General Approach to Rubber-Clay Nanocomposites: Intercalation of Stearic Acid // Applied Clay Science. 2011. Vol. 51. P. 117-125.
  • Nie Y., Qu L., Huang G., Wang X., Weng G., Wu J. Homogenization of natural rubber network induced by nanoclay // Applied Polymer Science. 2014. Vol. 131, № 11. P. 40324 (9).
  • Usha Devi K.S., Maria H.J., Thomas S., Ponnamma D., Causin V. Enhanced morphology and mechanical characteristics of clay/styrene butadiene rubber nanocomposites // Applied Clay Science. 2015. Vol. 114. P. 568-576.
  • Garishin O.K., Shadrin V.V., Svistkov A.L., Sokolov A.K., Stockelhuber W.K. Viscoelastic-plastic properties of natural rubber filled with carbon black and layered clay nanoparticles. Experiment and simulation // Polymer Testing. 2017. Vol. 63. P. 133-140.
  • Garishin O.K., Shadrin V.V., Belyaev A.Yu., Kornev Yu.V. Micro and nanoshungites - perspective mineral fillers for rubber composites used in the tires // Materials Physics and Mechanics. 2018. Vol. 40. P. 56-62.
  • Garishin O.K., Shadrin V.V. Testing Mechanical Features of Rubber Composites under Biaxial Loading // IOP Conf. Series: Materials Science and Engineering. 2019. Vol. 581. P. 2-9.
  • Garishin O.K., Moshev V.V. Structural rearrangement in dispersion-filled composites: influence on mechanical properties // Polymer Science. 2005. Vol. 47, № 4. P. 403-408.
  • Svistkov A. L. A continuum-molecular model of oriented polymer region formation in elastomer nanocomposites // Mechanics of solids. 2010. Vol. 45, № 4. P. 562-574.
  • Österlöf R., Wentzel H., Kari L. An efficient method for obtaining the hyperelastic properties of filled elastomers in finite strain applications // Polymer Testing. 2015. Vol. 41. P. 44-54.
  • Ivaneiko I., Toshchevikov V., Saphiannikova M., Stöckelhuber K.W., Petry F., Westermann S., Heinrich G. Modeling of dynamic-mechanical behavior of reinforced elastomers using a multiscale approach // Polymer. 2016. Vol. 82. P. 356-365.
  • Raghunath R., Juhre D., Klüppel M. A physically motivated model for filled elastomers including strain rate and amplitude dependency in finite viscoelasticity // International Journal of Plasticity. 2016. Vol. 78. P. 223-241.
  • Plagge J. and Klüppel M. A physically based model of stress softening and hysteresis of filled rubber including rate- and temperature dependency // International Journal of Plasticity. 2017. Vol. 89. P. 173-196.
  • Mullins L.J. Softening of rubber by deformation // Rub. Chem. Techn. 1969. Vol. 42, №1. P. 165-185.
  • Fetterman M.Q. The unique properties of precipitated silica in the design of high performance rubber // Elastomerics. 1984. № 9. P. 18-31.
  • Kraus G. Reinforcement of elastomers by carbon black // Rub. Chem. Tech. 1978. Vol. 51, № l. P. 297-321.
  • Mark J.E., Erman, B., Roland M. The Science and Technology of Rubber (Fourth Edition). New-York: Academic Press, 2013. 786 p.
  • Jovanovich V., Smarzija-Jovanovich S., Budinski-Simendich J., Markovich G. Marinović-Cincovich M. Composites based on carbon black reinforced NBR/EPDM rubber blends // Composites Part B: Engineering. 2013. Vol. 45, № 1. P. 333-340.
  • Salaeh S., Nakason C. Influence of modified natural rubber and structure of carbon black on properties of natural rubber compounds // Polymer composites. 2012. Vol. 33, № 4. P. 489-500.
  • Stöckelhuber K.W., Svistkov A.L., Pelevin A.G., Heinrich G. Impact of filler surface modification on large scale mechanics of styrene butadiene/silica rubber composites // Macromolecules. 2011. Vol. 44, № 11. P. 4366-4381.
  • Reichert W.F., Dietmar G., Duschl E.J. The double network, a model describing filled elastomers // Polymer. 1993. Vol. 34, № 6. P. 1216-1221.
  • Le Cam J.-B., Huneau B., Verron E., Gornet L. Mechanism of Fatigue Crack Growth in Carbon Black Filled Natural Rubber // Macromolecules. 2004. Vol. 37. P. 5011-5017.
  • Watabe H., Komura M., Nakajima K., Nishi T. Atomic Force Microscopy of Mechanical Property of Natural Rubber // Japanese Journal of Applied Physics. 2005. Vol. 44. P. 5393-5396.
  • Beurrot S., Huneau B., Verron E. In Situ SEM Study of Fatigue Crack Growth Mechanism in Carbon Black-Filled Natural Rubber // Journal of Applied Polymer Science. 2010. Vol. 117. P. 1260-1269.
  • Marco Y., Le Saux V., Calloch S., Charrier P. X-ray computed μ-tomography: a tool for the characterization fatigue defect population in a polychloroprene // Procedia Engineering. 2010. Vol. 2. P. 2131-2140.
  • Matos C.F., Galembeck F. Zarbin A.J.C. Multifunctional materials based on iron/iron oxide-filled Carbon nanotubes / natural rubber composites // Carbon. 2012. Vol. 50. P. 4685-4695.
  • Akutagava K., Yamaguchi K., Yamamoto A., Heguru H. Mesoscopical mechanical analysis of filled elastomer with 3D-finite element analysis and transmission electron microtomography // Rubber Chemistry and Technology. 2008. Vol. 81. P. 182-189.
  • Морозов И.А. Исследование микроструктуры области разрыва наполненного техническим углеродом полиизопрена // Тр. XXII симпозиума "Проблемы шин и резинокордных композитов". Москв. 2011. Т. 2. С. 48-53.
  • Dohi H., Kimura H., Kotani M., Kaneko T., Kitaoka T., Nishi T., Jinnai H. Three-dimensional imaging in polymer science: Its application to block copolymer morphologies and rubber composites // Polymer Journal. 2007. Vol. 39, № 8. P. 749-758.
  • Garishin O.K. Mechanical properties and destruction of dispersely filled elastomers. Structural modeling. Saarbrucken: Palmarium Academic Publishing (LAP), 2012. 286 p.
Еще
Статья научная