Стволовые клетки в терапии злокачественных опухолей головного мозга: реальность и перспективы
Автор: Брюховецкий Игорь Степанович, Брюховецкий Андрей Степанович, Мищенко Полина Владимировна, Меркулов Игорь Александрович, Хотимченко Юрий Степанович
Журнал: Клиническая практика @clinpractice
Рубрика: Обзоры
Статья в выпуске: 4 (16), 2013 года.
Бесплатный доступ
Современные методы лечения злокачественных опухолей головного мозга мало эффективны. Одна из причин заключается в ориентации всех существующих технологий и приемов на удаление всех неопластических клеток из организма. Понимание системных механизмов миграции стволовых клеток позволяет по-новому взглянуть на роль этого явления в развитии злокачественных опухолей. Миграция и «хоуминг» нормальных стволовых клеток, будучи изначально регуляторным процессом, обеспечивающим реваскуляризацию и ремоделирование области травматического или ишемического повреждения мозга, в канцерогенезе играют роль осевого проводника неопластического процесса. Использование феномена миграции и хоуминга стволовых клеток в опухолевый очаг в терапевтических целях открывает возможности преодоления гематоэнцефалического барьера, снижения токсичности химиотерапии и повышения эффективности лучевой терапии, делает возможным направленное воздействие на гипоксические зоны опухоли, позволяет непосредственно воздействовать на ключевые жизненные процессы опухолевых стволовых клеток. Эти аргументы позволяют считать системные механизмы направленной миграции и хоуминга стволовых клеток в неопластический очаг фундаментальной теоретической платформой для создания принципиально нового класса противоопухолевых, клеточных персонифицированных препаратов.
Опухоли мозга, стволовые клетки, метастазы в мозг, направленная миграция
Короткий адрес: https://sciup.org/14338473
IDR: 14338473
Список литературы Стволовые клетки в терапии злокачественных опухолей головного мозга: реальность и перспективы
- Stupp R., Mason W.P., van der Bent M.J. et al. Radiotherapy plus concomitant and adjuvant temozolamide for glioblastoma. N Engl J Med 2005; 352(10): 987-96.
- Stupp R., Hegi M.E., Mason W.P. et al. Effects of radiotherapy with concomitant and adjuvant temozolamide versus radiotherapy alone on survival in glioblastoma in a randomized phase III study: 5-year analysis of the EORTC-NCIC trail. The lancet oncology 2009; 10(5):459-66.
- Yabroff K.R., Harlan L., Zeruto C. et al. Patterns of care and survival for patients with glioblastoma multiforme diagnosed during 2006. Journal of Neuro-Oncology 2012; 14(3):351-59.
- Chiou S.M. Survival of brain metastasis patients treated with gamma knife surgery alone. Clin neurol neurosurg 2013; 115(3):260-5.
- Cai Y., Wang W.L., Xu B. et al. Survival status of stage IV non-small cell lung cancer patient after radio-therapy -a report of 287 cases. Chinese journal of cancer 2006; 25(11):1419-22.
- Hwang S.W., Su J.M., Jea A. Diagnosis and management of brain and spinal cord tumors in the neonate. Seminars in fetal and neonatal medicine 2012; 17(4):202-6.
- Fukuda H., Kubota K., Matsuzawa T. Pioneering and fundamental achievements of the development of positron emission tomography (PET) in oncology. Tohoku J Exp Med 2013; 230(3):155-69.
- Pardridge W.M. The blood-brain barrier: bottleneck in brain drug development. NeuroRx: the journal of American society for experimental neuro therapeutics 2005; 2(1):3-14.
- Hayashi Y., Nakadava M., Kinoshita M. et al. Surgical strategies for nonenhancing slow-growing gliomas with special reference to functional reorganiations: reiew with own experience. Neurol Med Chir 2013; 53(7):438-46.
- Narita Y. Current knowledge and treatment strategies for grade II gliomas. Neurol Med Chir 2013; 57(3):429-37.
- Benedetti S., Pirola B., Pollo B. et al. Gene therapy of experimental brain tumors using neural progenitor cells. Nature medicine 2000; 6:447-50.
- Aboody S.K., Broun A., Rainov G.N. et al. Neural stem cells display extensive tropism for pathology in adult brain: Evidence from intracranial gliomas. PNAS 2000; 97(23): 12846-51.
- Zhao D., Najbauer J., Annala J.A., et al. Human neural stem cell tropism to metastatic brest cancer. Stem cells 2012; 30: 314-25.
- Aboody S.K., Najbauer J., Schmidt N.O. et al. Targeting of melanoma brain metastases using engineered neural stem\progenitor cell. Neuro Oncol 2006; 4: 119-26.
- Horuk R. Chemokines receptors. Cytokine Growth Factor Rev 2001; 12(4):313-35.
- Kucia M., Reca R., Miecus K. et al. Trafficking of normal stem cell and metastasis of cancer Stem cells involve similar mechanisms: Pivotal role of the SDF-1-CXCR4 axis. Stem cells 2005; 23(7): 879-94.
- Erlandson A., Larsson J.,Forsberg-Nilsson K. et al. Stem cell factor is a chemoattractant and a survival factor for the CNC stem cell. Experimental cell research 2004; 301(2): 201-10.
- Wondergem R., Ecay T.W., Mahieu F. HGF\SF and menthol increase human glioblastoma cell calcium and migration. Biochem Biophys Res Commun 2008; 372(1):210-5.
- Schmidt N.O., Prylecki W.,Yang W. et al. Brain tumor tropism of transplanted human neural stem cells is induced by vascular endothelial growth factor. Neoplasia 2005; 7(6):623-29.
- Widera D., Holtkamp W., Entschladen F. et al. MCP-1 induced migration of adult neural stem cells. Eur J Cell Biol 2004;83(8):381-87.
- Palumbo R., Branchi M.E. High mobility group box 1 protein, a cue for stem cell recruitment. Biochem Pharmacol 2004; 68(6):1165-70.
- Palumbo R., Galves B.G., Pusterla T. et al. Cell migrating to sites of tissue damage in response to the danger signal HMGB1 require NF-kapaB activation. J Cell Biol 2007; 179:33-40.
- Asuthkar S., Gondi C.S., Nalla A.K. et al. Urocinase-type plasminogen activator receptor (uPAR)-mediated regulation of WNT\β-catenin signaling is enhanced in irradiated medulloblastoma cells. J Biol Chem 2012: 287(24):20576-89.
- Gutova M., Najbauer J., Frank R.T. et al. Urokinase plasminogen activator and urokinase plasminogen activator receptor mediate human stem cell tropism to malignant solid tumors. Stem Cells 2008; 26:1406-13.
- Son B.R., Marquez-Curtis L.A., Kukia M. et al. Migration of bone marrow and cord blood mesenchymal Stem Cell in vitro is regulated by stromal-derived factor-1-CXCR4 and hepatocyte growth factor-c-met axis and involves matrix metalloproteinase. Stem Cell 2006; 24:1254-64.
- Ziu M., Schmidt N.O., Cargioli T.G. et al. Glioma-produced extracellular matrix influence brain tumor tropism of human neural stem cells. J Neurooncol 2006; 79(2):125-33.
- Kendal S.E., Najbauer J., Johnston H.F. et al. Neural stem cell targeting of glioma is dependent on P13K signaling. Stem Cells 2008; 26(6):1575-86.
- Rafi S., Lyden D. Therapeutic stem and progenitor cell transplantation for organ vascularization and proliferations. Nature medicine 2003; 9(6):702-12.
- Bagry A., Gurney T., He X. et al. The chemokine receptor CXCR4 regulates migration of dentate granule cells. Development 2002; 129(18):4249-60.
- Lazarini F., Tham T.N., Casanova P. et al. Role of the alpha chemokine stromal cell-derived factor (SDF-1) in the developing and mature central nervous system. Glia 2003; 42(2):139-48.
- Werner L., Guzner-Gur H., Dotan I. Involvement of CXCR4/CXCR7/CXCL12 interactions in inflammatory bowel disease. Theranostics 2013;3(1): 40-46.
- Abbott J.D., Huang Y., Liu D. et al. Stromal cell-derived factor play a critical role in stem cell recruitment to the heart after myocardial infarction but in not sufficient to induce houming in the absence injury. Circulation 2004; 110(21):3300-05.
- Ratajczak M.Z., Majka M., Kukia M. et al. Expression of functional CXCR4 by muscle satellite cells and secretion of SDF-1 by muscle-derived fibroblasts is associated with presece of both muscle progenitors in bone marrow and hematopoetics stem/progenitor cells in miscules. Stem Cell 2003; 21:363-71.
- Hatch H.M., Zeng D., Jorgensen M.L. et al. SDF-1alpha/CXCR4: a mechanism for hepatic oval cell activation and bone marrow stem cell recruitment to the injured liver of rats. Cloning Stem Cells 2002; 4(4):339-51.
- Butler J.M., Guthrie S.M., Koc M. et al. SDF-1 is both necessary and sufficient to promote proliferative retinopathy. J Clinical Invest 2005; 115(1):86-93.
- Cheng M., Qin G. Progenitor cell mobilization and recruitment: SDF-1; CXCR4; α4-integrin, and c-kit. Prog Mol Biol Trans Sci 2012; 111:243-64.
- Cheng M., Zhou J., Wu M. et al. CXCR4-mediated bone marrow progenitor cell maintenance and mobilization a modulated by c-kit activity. Circ Res 2010; 107(9):1083-93.
- Petit I., Szyper-Kravits M., Nagler A. at al. G-CFS induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nature immunol 2002; 3(7):687-94.
- Kucia M., Jankowski K., Reca R. et al. SDF-1/CXCR4 signaling, locomotion, chemotaxis and adhesion. J Mol Histol 2004; 35(3):233-45.
- Crawford A.H., Chambers C., Franckin R.J. Remyelination: the true regeneration of the central nervous system. Journal of comparative pathology 2013; 149(2-3):242-54.
- Muller A., Homey B., Soto H. et al. Involvement of CXCR4 chemokine receptors in brest cancer metastasis. Nature 2001; 410:50-56.
- Syn Y.X., Wang J., Shelburne C.E., et al. Expression of CXCR4 and CXCL12 (SDF-1) in human prostate cancers (PCa) in vivo. J Cell Biochem 2003; 89(3):462-73.
- Porcile C., Bajetto A., Barbero S. et al. CXCR4 activation induces epidermal growth factor receptor transactivation in an ovarian cancer cell line. Annals of the New York Academy of sciences 2004; 1030: 162-69.
- Geminder H., Sadi-Assif O., Goldberg L. et al. A possible role of CXCR4 and its ligand, the CXC chemokine stromal cell-derived factor-1, in the development of bone marrow metastasis in neuroblastoma. J Immunol 2001; 167(8):4747-57.
- Schioppa T., Uranchimeg B., Saccani A. et al. Regulation of the chemokine receptor CXCR4 by hypoxia. J Exp Med 2003; 198(9):1391-402.
- Helbig G., Christopherson K.W., Bhat-Nakshatri P. et al. NF-kB promotes brest cancer cell migration and metastasis by including the expression of the chemokine receptor CXCR4. J Biol Chem 2003; 278(24):2163-38.
- Franitza S., Kollet O., Bril A. et al. TGF-beta1 enhances SDF-1 alpha induced chemotaxis and homing of naive T-cell by regulating CXCR4 expression and downstream cytoskeletal effector molecules. Eur J Immunol 2002; 32(1):193-202.
- Yonezawa A., Morita R., Takaori-Kondo A. et al. Natural alpha interferon-producing cells respond to human immunodeficiency virus type 1 with alfa interferon production and migration into dendritic cells. J Virol 2003; 77(6):3777-84.
- Guo J., Lou W., Ji.Y. et al. Effects of CCR7, CXCR4 and VEGF on the limf node metastasis on human pancreatic ductal adenocarcinoma. Oncol Lett 2013; 5(5):1572-78.
- Kim S.W., Kim H.Y., Lee H.G. et al. Dexamethasone and hypoxia upregulate CXCR4 expression in myeloma cells. Leuk Lymphoma 2009; 50(7): 1163-73.
- Li K.S., Huang Y.H., Ho C.Y. et al. The role of IL-8 and CDF-1\CXCR4 induced angiogenesis of laryngeal and hypopharingeal squamous cell carcinoma. Oral Oncol 2012; 48(6):507-15.
- Han K.H., Hong K.H., Ko J. et al. Lisophosphatidylcholine up-regulates CXCR4 chemokine receptor in human CD4 T cells. J Leukoc Biol 2004; 76(1):195-202.
- Anderson D.M., Williams D.E., Tushinski R. et al. Alternate splicing of mRNAs encoding human mast cell growth factor and localization of the gene to chromosome 12q22-q24. Cell growth and differentiation: the molecular biology journal of the American association for cancer research 1991; 2(8):373-8.
- Yarden Y., Kuang W.J., Yang-Feng T. et al. Human proto-oncogen C-kit a new cell surface receptor of tyrosine kinase for an unidentified ligand. The EMBO journal 1987; 6(11):3344-51.