Субоднородные отображения в теории монотонных динамических систем

Автор: Смирнов А.И.

Журнал: Вестник экономики, управления и права @vestnik-urep

Рубрика: Математика

Статья в выпуске: 1 (34), 2016 года.

Бесплатный доступ

Дается обзор результатов о свойствах орбит некоторых классов сохраняющих порядок нелинейных динамических систем в банаховых пространствах. Основное внимание уде-ляется дискретным динамическим системам, порождаемым так называемыми субодно-родными отображениями.

Динамическая система, монотонные отображения, субоднородные отображения

Короткий адрес: https://sciup.org/14214717

IDR: 14214717

Список литературы Субоднородные отображения в теории монотонных динамических систем

  • Lemmens B., Nussbaum R. D. Nonlinear Perron-Frobebius Theory. Cambridge Tracts in Mathematics. Vol. 189. Cambridge: Cambridge Univ. Press, 2012.
  • Krause U. Positive Dynamical Systems in Discrete Time: Theory, Models, and Applications. Berlin-Munich-Boston: Walter de Gruyter GmbH, 2015.
  • Красносельский М.А. Положительные решения операторных уравнений. М.: Гос. изд-во физ.-мат. лит., 1962.
  • Красносельский М.А., Лифшиц Е.А., Соболев А.В. Позитивные линейные системы. Метод положительных операторов. М.: Наука, 1985.
  • Опойцев В.И. Равновесие и устойчивость в моделях коллективного поведения. М.: Наука, 1977.
  • Опойцев В.И. Нелинейная системостатика. М.: Наука, 1986.
  • Смирнов А.И. Квазивогнутые отображения в некоторых моделях эволюционирующих систем: Дисс…канд. физ.-мат. наук. Екатеринбург: ИММ УНЦ АН ССР, 1983.
  • Смирнов А.И. Алгоритм решения задачи оптимизации использования ресурса природно-экономической системы//Методы оптимизации и классификации в прикладных задачах. Свердловск: ИММ УНЦ АН СССР, 1988. C. 9-19.
  • Смирнов А.И. Условия примитивности нелинейного оператора шага некоторых итерационных процессов в терминах матриц//Вестник УИЭУиП. 2015. №1(30). С. 70-78.
  • Босс В. Лекции по математике. Том 5. Функциональный анализ. М.: КомКнига, 2005.
  • Potter A. J. B. Applications of Hilberts projective metric to certain classes of nonhomogeneous operators//Quart. J. Math. Oxford. 1977. Vol. 28(1). P. 93-99.
  • Zhai C., Guo C. On б-convex operators//J. Math. Anal. Appl. 2006. Vol. 316. P. 556-565.
  • Huang M.-J., Huang C.-Y., Tsai T.-M. Application of Hilberts projective metric to a class of positive nonlinear operators//Linear Algebra Appl. 2006. Vol. 413(1). P. 202-211.
  • Sang Y. Existence and uniqueness of fixed points for mixed monotone operators with perturbations //Electronic J. Differential Eqns. 2013. Vol. 2013, no. 233. P. 1-16. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu (дата обращения: 18. 12.2015).
  • Isac G, Tammer C. Application of a vector-valued Ekeland-type variational principle for deriving optimality conditions//Nonlinear Analysis and Variational Problems. Series Springer Optimization and its Applications. Vol. 35, Chapter 23/Pardalos P., Rassias T., Khan A.A. (Eds) New York: Springer Verlag, 2009. P. 343-366.
  • Bullen P. Dictionary of inequalities. Boca Raton: CRC Press, 2015.
  • Hirsch M. W., Smith H. L. Monotone Maps: a review//J. Dierence Eqns. Appl. 2005. Vol. 11. P. 379-398.
  • Hirsch M. W., Smith H. L. Monotone Dynamical Systems//Handbook of Differential Eqns: Ordinary Differential Eqns./Canada A., Drabek P., Fonda A. (Eds.) Elsevier B.V., Amsterdam. 2005. Vol. II. P. 239-357.
  • Takač P. Asymptotic behavior of discrete-time semigroups of sublinear, strongly increasing mappings with applications to biology//Nonlinear Anal. Theory Meth. Appl. 1990. Vol. 14(1). P. 35-42.
  • Jiang J.-F. On the analytic order-preserving discrete-time dynamical systems in Rn with every fixed point stable//J. Lond. Math. Soc. 1996. Vol. 53. P. 317-324.
  • Zhao X.-Q., Jing Z.-J. Global asymptotic behavior in some cooperative systems of functional differential equations//Canad. Appl. Math. Quart. 1996. Vol. 4, no. 4. P. 421-444.
  • Neseman T. A limit set trichotomy for positive nonautonomous discrete dynamical systems//J. Math. Anal. Appl. 1999. Vol. 237. P. 55-73.
  • Pallaschke D., Rolewicz S. Foundation of Mathematical Optimization. Dordrecht-Boston-London: Kluwer Academic Publishers, 1997.
  • Weller D. Hilberts metric, part metric and self mappings of a cone. PhD thesis. Universitat Bremen, Germany, 1987.
  • Nussbaum R. D. Hilbert’s projective metric and iterated nonlinear maps//Mem. Amer. Math. Soc. 1988. Vol. 75, no. 391.
  • Nussbaum R. D. Iterated nonlinear maps and Hilbert’s projective metric. Part II//Mem. Amer. Math. Soc. 1989. Vol. 79, no. 401.
  • Krause U., Ranft P. A limit set trichotomy for monotone nonlinear dynamical systems//Nonlinear Anal. Theory Meth. Appl. 1992. Vol. 19, Issue 4. P. 375-392.
  • Krause U., Nussbaum R. D. A limit set trichotomy for self-mappings of normal cones in Banach spaces//Nonlinear Anal. Theory Meth. Appl. 1993. Vol. 20. P. 855-870.
  • Hirsch M. W. Positive equilibria and convergence in subhomogeneous monotone dynamics//Comparison methods and stability theory. Lecture Notes in Pure and Applied Mathematics. New-York: Marcel Dekker, 1994. Vol. 162. P. 169-187.
  • Akian M., Gaubert S. Spectral theorem for convex monotone homogeneous maps, and ergodic control//Nonlinear Anal. Theory Meth. Appl. 2003. Vol. 52, no. 2. P. 637-679.
  • Lemmens B., Scheutzow M. A. On the dynamics of supnorm nonexpansive maps//Ergodic Theory Dynam. Syst. 2005. Vol. 25 (3). P. 861-871.
  • Lemmens B., Nussbaum R. D., 2013
  • Zhao X.-Q. Dynamical Systems in Population Biology. New York: Springer Verlag, 2003.
  • Cosner C. Book Reviews. Smith H. L. Monotone Dynamical Systems: an Introduction to the Theory of Competitive and Cooperative Systems // Mathematical Surveys and Monographs. 1995. Vol. 41. Amer. Math. Soc., Providence, RI // Bull. Amer. Math. Soc. (New Series). 1996. Vol. 33, no. 2. P. 203-209.
  • Smith H. L. Monotone Dynamical Systems: an Introduction to the Theory of Competitive and Cooperative Systems//Mathematical Surveys and Monographs. Amer. Math. Soc. 1995. Vol. 41.
  • Hirsch M. W. Differential equations and convergence almost everywhere in strongly monotone flows//Contemporary Mathematics. 1983. Vol. 17. P. 267-285.
  • Hirsch M. W. The dynamical systems approach to differential equations//Bull. Amer. Math. Soc. (N.S.) 1984. Vol. 11. P. 1-64.
  • Matano H. Existence of nontrivial unstable sets for equilibriums of strongly order preserving systems//J. Fac. Sci. Univ. Tokyo. 1984. Vol. 30. P. 645-673.
  • Matano H. Strongly order-preserving local semi-dynamical systems//Theory and Applications, in Semigroups. Vol. I/H. Brezis, M. G. Crandall, and F. Kappel, eds. Res. Notes in Math., 1986. Vol. 141. Longman Scientific and Technical, London. P. 178-185.
  • Smith H. L., Thieme H. R. Quasi convergence for strongly ordered preserving semiflows//SIAM J. Math. Anal. 1990. Vol. 21. P. 673-692.
  • Smith H. L., Thieme H. R. Convergence for strongly ordered preserving semiflows//SIAM J. Math. Anal. 1991. Vol. 22. P. 1081-1101.
  • Dancer E. N., Hess P. Stability of fixed points for order-preserving discrete-time dynamical systems//J. Reine Angew. Math. 1991. Vol. 419. P. 125-139.
  • Hirsch M. W. Stability and convergence in strongly monotone dynamical systems//J. Reine Angew. Math. 1988. Vol. 383. P. 1-53.
  • Hirsch M. W., Smith H. L. Generic quasiconvergence for strongly order preserving semiflows: a new approach//J. Dynam. Differential Eqns. 2004. Vol. 16, Issue 2. P. 433-439.
  • Takač P. Asymptotic behavior of strongly monotone time-periodic dynamical processes with symmetry//J. Differential Eqns. 1992. Vol. 100. P. 355-378.
  • Polačik P., Tereščak I. Convergence to cycles as a typical asymptotic behavior in smooth strongly monotone discrete-time dynamical systems//Arch. Rational Mech. Anal. 1992. Vol. 116. P. 339-360.
  • Hess P., Polačik P. Symmetry and convergence properties for nonnegative solutions of nonautonomous reaction-diffusion problems, Comenius University, 1993. Preprint No. M1-93.
  • Thompson A. C. Generalization on the Perron-Frobenius theorem to operators mapping cone into itself. Ph.D. thesis. Univ. of Newcastle upon Tyne, 1963.
  • Thompson A. C. On certain contraction mappings in a partially ordered vector space//Proc. Amer. Math. Soc. 1963. Vol. 14. P. 438-443.
  • Akcoglu M. A., Krengel U. Nonlinear models of diffision on a finite space//Probab. Theory Related Fields. 1987. Vol. 76. P. 411-420.
  • Nussbaum R. D. Some nonlinear weak ergodic theorems//SIAM J. Math. Anal. 1990. Vol. 21. P. 436-460.
  • Nussbaum R. D. Convergence of iterates of a nonlinear operator arising in statistical mechanics//Nonlinearity. 1991. Vol. 4(4). P. 1223-1240.
  • Takač P. Convergence in the part metric for discrete dynamical systems in ordered topological cones//Nonlinear Anal. Theory Meth. Appl. 1996. Vol. 26. P. 1753-1777.
  • Gaubert S., Gunawardena J. The Perron-Frobenius theorem for homogeneous, monotone functions //Trans. Amer. Math. Soc. 2004. Vol. 356. P. 4931-4950. URL: http://arxiv.org/pdf/math/0105091v2.pdf (дата обращения: 25.05.2015).
  • Hirsch M. W., Smith H. L. Monotone Maps: a review//J. Dierence Eqns. Appl. 2005. Vol. 11. P. 379-398.
  • Akian M., Gaubert S., Lemmens B., Nussbaum R. D. Iteration of order preserving subhomogeneous maps on a cone//Math. Proc. Cambridge Philos. Soc. 2006. Vol. 140, no. 1. P. 157-176.
  • Burbanks A. D., Nussbaum R. D., Sparrow C. T. Extensions of order-preserving maps on a cone//Proc. Roy. Soc. Edinburgh. Sect. A. 2003. Vol. 133(1). P. 35-59.
  • Birkhoff G. Extension of Jentzschґs Theorem//Trans. Amer. Math. Soc. 1957. Vol. 85. P. 219-227.
  • Samelson H. On the Perron-Frobenius theorem//Michigan Math. J. 1957. Vol. 4, no. 1. P. 57-59.
  • Bushell P. J. Hilbert’s projective metric and positive contraction mappings in a Banach space//Arch. Ration. Mech. Anal. 1973. Vol. 52, no. 4. P. 330-338.
  • Bushell P. J. On the projective contraction ratio for positive linear mappings//J. Lond. Math. Soc. 1973. Vol. 6. P. 256-258.
  • Bushell P. J. The Cayley-Hilbert metric and positive operators//Linear Algebra Appl. 1986. Vol. 84. P. 71-280.
  • Забрейко П.П., Красносельский М.А., Покорный Ю.В. Об одном классе линейных положительных линейных операторов//Функциональный анализ и приложения. 1971. Т. 5, вып. 4. С. 9-17.
  • Cobzas Ş., Rus M.-D. Normal cones and Thompson metric//Springer Optimization and Its Applications. 2014. Issue 94/Topics in Mathematical Analysis and Applications. Rassias T. M., Tуth L. (Eds.) P. 209-258.
  • Akian M., Gaubert S., Nussbaum R. D. Uniqueness of the fixed point of nonexpansive semidifferentiable maps //Trans. Amer. Math. Soc. 2015. URL: http://arxiv.org/pdf/1201.1536.pdf (дата обращения: 14.08.2015)
  • Lemmens B., Nussbaum R. D. Birkhoff’s version of Hilbert’s metric and its applications in analysis //Handbook of Hilbert Geometry/G. Besson, A. Papadopoulos and M. Troyanov (eds). Zurich: European Math. Soc. Publishing House, 2015. URL: https://ia600902.us.archive.org/27/items/arxiv-1304.7921/1304.7921.pdf (дата обращения: 25.05.2015).
  • Lemmens B., Roelands M. Unique geodesics for Thompsons metric//Ann. Institut Fourier. 2015. Vol. 65, no. 1. P. 315-348.
  • Kohlberg E., Pratt J. W. The contraction mapping approach to the Perron-Frobenius theory: why Hilberts metric?//Math. Oper. Res. 1980. Vol. 7, Issue 2. P. 198-210.
  • Edelstein M. On xed and periodic points under contractive mappings//J. Lond. Math. Soc. 1962. Vol. 37. P. 74-79.
  • Kohlberg E. The Perron-Frobenius theorem without additivity//J. Math. Econ. 1982. Vol. 10. P. 299-303.
  • Song Y., Qi L. Positive eigenvalue-eigenvector of nonlinear positive mappings//Frontiers of Mathematics in China. 2014. Vol. 9, Issue 1. P. 181-199.
  • Krause U. Perrons stability theorem for non-linear mappings//J. Math. Econom. 1986. Vol. 15. P. 275-282.
Еще
Статья научная