Succinate as a mobilization cue

Автор: Maevsky Eugene I., Vasilyeva Anna A., Kozhurin Mikhail V., Leonard Paul, Schwarzburd Polina M., Uchitel Mikhail I., Zapatrina Elena A., Maevskaya Marina E., Bogdanova Bogdanova

Журнал: Cardiometry @cardiometry

Рубрика: Review

Статья в выпуске: 17, 2020 года.

Бесплатный доступ

Succinic acid, being a metabolite of the Krebs cycle and the end product of anaerobic transformations in mitochondria, functions outside mitochondria and cells as a regulatory signal. In the cytosol, micromolar amounts of succinate stabilize the transcriptional hypoxia-inducible factor HIF, which triggers the genes responsible for adaptation to hypoxia. Outside the cells, succinate activates the SUCNR1 receptor, which increases the concentration of intracellular calcium. The effect of short bursts of endogenous succinate accumulation and signaling after hypoxia/ischemia, or extreme glucose use from physical exercise should be distinguished from the effect of a permanently increased level of endogenous succinate under pathology (obesity, diabetes mellitus, chronic ischemia, succinate dehydrogenase damage). A short succinate signal triggers an adaptive response by an organism. Prolonged rise and highly elevated levels of endogenous succinate is a pro-inflammatory, damaging factor that can contribute to the progression of neoplasms. Use of succinate-containing compositions at a dose of 0.5-5 millimole can only provide a short signal. This is due to the positive effect of a number of succinate-containing agents.

Еще

Adaptive succinate gain, stabilization hif, succinate receptor activation

Короткий адрес: https://sciup.org/148311470

IDR: 148311470   |   DOI: 10.12710/cardiometry.2020.17.110120

Список литературы Succinate as a mobilization cue

  • Therapeutic action of succinic acid. [Digest of arti¬cles] Ed. prof. M.N. Kondrashova. Pushchino: Scien-tific. center of biol. Research of the USSR Academy of Sciences, 1976.234 p. [in Russian]
  • Mitochondrial processes in the temporal organiza¬tion of vital activity, materials of the All-Union sem-inar "Regulation of energy metabolism and physio¬logical state" [Collection of articles]. NTsBI AS USSR. Pushchino, 1978.182 p; [in Russian]
  • Saratikov AS, Khazanov VA, Kondrashova MN, Gold¬berg YM. Drug for the treatment of cerebral ischemia RF Patent No. 2 108 095 C1. 04/10/1998. [in Russian]
  • Smirnov AV, Nesterova OB, Golubev RV. Succinic acid and its use in medicine. Part I. succinic acid: me-tabolite and metabolism regulator of the human body. Nephrology. 2014;2:33-41. [in Russian]
  • Smirnov AV, Nesterova OB, Golubev RV. Succinic acid and its use in medicine. Part II. The use of suc-cinic acid in medicine. Nephrology. 2014;4:10-24. [in Russian]
  • Kaminsky YuG, Kosenko EA, Maevsky EI, Kondra¬shova MN, Rosenfeld AS. A drug with actoprotective activity. RF patent №2121836.11.29.1998. [in Russian]
  • Maevsky EI, Uchitel ML. Means and kit for the nor¬malization of functional disorders occurring in the premenopausal and climacteric periods. RF patent No. 2220712 10.01 2004. [in Russian]
  • Maevsky EI, Kozhurin MV, Maevskaya ME. Formu¬lations and dosage forms for enhancing performance or recovery from stress. No. :WO/2019/099731. №PCT/US 2018/061371. 23.05.2019. [in Russian]
  • Kashlinsky A, et al. A means for reducing alcohol intoxication, preventing and removing alcohol intox-ication and hangover syndrome and a method for re¬ducing alcohol intoxication, preventing and removing alcohol intoxication and hangover syndrome using this tool. RF patent No. 2 160 589. Bull. No. 35. De¬cember, 20, 2000. [in Russian]
  • Komissarova IA, et al. A pharmaceutical compo¬sition of an anti-alcoholic, stimulating energy me-tabolism, acid-forming and secretory function of the gastric mucosa, radioprotective and anti-choleric ac¬tion, a method for the prevention and treatment of al¬cohol intoxication and alcohol withdrawal syndrome, a method for stimulating energy metabolism, a meth¬od for stimulating and diagnosing the acid-forming and secretory function of the gastric mucosa and a method for protecting against radiation damage to warm-blooded animals. RF patent No.2039556, July, 20, 1995. [in Russian]
  • Evglevsky AA, et al. A drug for correcting meta¬bolic processes and increasing the natural resistance of the animal body. RF patent No. 2447886. April, 20, 2012. [in Russian]
  • Hager, Hermann Praxis für Apotheker, Ärzte, Dro¬gisten, und Medizinalbeamte. 1816-1897. (Fischer, Bernhard, Hartwich, Carl. Publisher Berlin: J. Spring¬er. 1856-1905); Hagers Handbuch der Pharmaze-utischen Praxis. Folgeband 5: Stoffe L-Z. Herausgeber: Bruchhausen, F., Ebel, S., Hackenthal, E., Holzgrabe, U. (Hrsg.). Springer, Berlin. 1999.
  • Maevsky EI, Rosenfeld AS, Grishina EV, Kondra¬shova MN. Correction of metabolic acidosis by main-taining mitochondrial functions. Pushchino. ITEB RAS 2001.155 р. [in Russian]
  • Kondrashova MN, Mayevsky EI. The interaction of hormonal and mitochondrial regulation. Coll. Reg-ulation of energy metabolism and physiological state. M.Nauka. 1078. p. 217-224. [in Russian]
  • Kondrashova MN. Hormone-like action of suc¬cinic acid. Vopr. Biol. Med. Pharmac. Chemistry. 2002;1:1–7. [in Russian]
  • Kondrashova MN, Kuznetzova GD. Succinic acid as a physiological signal molecule. Signal molecule and behaviour. Eds. W. Winlow et. al. Manchester Univer¬sity Press, Manchester; New York, 1991. p. 295 –300.
  • Wang GL, Yiang B-H, Rue EA, Semenza GL. Hy¬poxia-inducible factor 1 is a basic-helix- loop-helix-PAS heterodimer regulated by cellular O2 tension. PNAS USA. 1995; 92: 5510–5514;
  • The Nobel Prize in Physiology or Medicine 2019: Gregg L. Semenza/ Hypoxia-Inducible Factors in Physiology and Medicine. https://www.nobelprize.org/prizes/ medicine/2019/semenza/facts.
  • Hochachka PW, Dressendorfer RH. Succinate ac¬cumulation in man during exercise. Eur J Appl Physiol Occup Physiol. 1976;35(4):235–42.
  • Taegtmeyer H. Metabolic response to cardiac hy¬poxia. Increased production of succinate by rabbit papillary muscles. Circ. Res. 1978;43:808-15.
  • Peuhkurinen KJ, et al. Tricarboxylic acid cycle metabolites during ischemia in isolated perfused rat heart. Am. J. Physiol. 1983;244:H281-8.
  • Pisarenko OI, Khlopkov VN, Ruuge EK. A 1H NMR study of succinate synthesis from exogenous precursors in oxygen-deprived rat heart mitochon¬dria. Biochem. Int. 1986;12(1):145-53.
  • Mills E, O'Neill LA. Succinate: a metabolic signal in inflammation. Trends in cell biology. 2014;24(5):313-20. doi: 10.1016/j.tcb.2013.11.008.
  • Yoon D, Pastore YD, Divoky V, et al. Hypoxia-induc¬ible factor-1 deficiency results in dysregulated erythro¬poiesis signaling and iron homeostasis in mouse devel¬opment. J. Biol. Chem. 2006;281:25703–11.
  • Lukyanova LD. Mitochondrial Signaling in Hypox¬ia. Open Journal of Endocrine and Metabolic Diseases. 2013;3(3). Article ID: 34494, 13 pages. DOI:10.4236/ojemd.2013.33029
  • Guzy RD, et al. Loss of the SdhB, but Not the SdhA, subunit of complex II triggers reactive oxygen spe-cies-dependent hypoxia-inducible factor activation and tumorigenesis. Mol Cell Biol. 2008 Jan;28(2):718-31. Epub 2007 Oct 29. DOI: 10.1128/MCB.01338-07;
  • Mu X. Zhao T, Xu C, et al. Oncometabolite suc¬cinate promotes angiogenesis by upregulating VEGF expression through GPR91-mediated STAT3 and ERK activation. Oncotarget. 2017 Feb 21;8(8):13174-85. doi: 10.18632/oncotarget.14485/
  • Martins R, Bugalho MJ. Paragangliomas/Pheo¬chromocytomas: Clinically Oriented Genetic Testing. Int J Endocrinol. 2014;2014:794187. Published online 2014 May 12. doi:10.1155/2014/794187.
  • Bénit P, et al. Unsuspected task for an old team: succinate, fumarate and other Krebs cycle acids in metabolic remodeling. Biochim Biophys Acta. 2014 Aug;1837(8):1330-7. doi: 10.1016/j.bba-bio.2014.03.013. Epub 2014
  • He W, et al. Citric acid cycle intermediates as li¬gands for orphan G-proteincoupled receptors. Nature. 2004;429:188–93.
  • Chouchani ET, et al. Ischaemic accumulation of succinate controls reperfusion injury through mito-chondrial ROS. Nature. 2014;15(7527):431–5.
  • Selak MA, et al. Succinate links TCA cycle dys¬function to oncogenesis by inhibiting HIF-prolyl hy-droxylase. Cancer cell. 2005;7:77-85. DOI 10.1016/j.ccr.2004.11.022
  • an Diepen JA, et al. SUCNR1-mediated chemo¬taxis of macrophages aggravates obesity-induced inflammation and diabetes. Diabetologia. 2017 Jul;60(7):1304-13. doi: 10.1007/s00125-017-4261-z. Epub 2017 Apr 5.
  • Rubic T, et al. Triggering the succinate receptor GPR91 on dendritic cells enhances immunity. Nat Im-munol. 2008 Nov;9(11):1261-9. doi: 10.1038/ni.1657. Epub 2008 Sep 28.
  • Tretter L, Patocs A, Chinopoulos C. Succinate, an intermediate in metabolism, signal transduction, ROS, hypoxia, and tumorigenesis. Biochimica et Biophysica Acta (BBA) – Bioenergetics. 2016;1857(8):1086-101.
  • McCreath KJ, Espada S, Gálvez BG. Targeted dis¬ruption of the SUCNR1 metabolic receptor leads to dichotomous effects on obesity. Diabetes. 2015 Apr;64(4):1154-67. doi: 10.2337/db14-0346. Epub 2014 Oct 28.].
  • Sadagopan N, et al. Circulating succinate is elevat¬ed in rodent models of hypertension and metabolic disease. Am J Hypertens. 2007 Nov;20(11):1209-15. DOI:10.1016/j.amjhyper.2007.05.010.
  • De Souza DP, et al. Autocrine IFN-I inhib¬its isocitrate dehydrogenase in the TCA cycle of LPS-stimulated macrophages. J Clin Invest. 2019 Oct 1;129(10):4239-44. doi: 10.1172/JCI127597.PMID: 31483287
  • Hochachka PW, Dressendorfer RH. Succinate ac¬cumulation in man during exercise. Eur J Appl Physiol Occup Physiol. 1976;35(4):235–42.
  • Serena C, Ceperuelo-Mallafré V, Keiran N, et al. Elevated circulating levels of succinate in human obe-sity are linked to specific gut microbiota. ISME J. 2018; 12(7):1642–57.
  • Kohlhauer M, et al. Metabolomic Profiling in Acute ST-Segment-Elevation Myocardial Infarction Identifies Succinate as an Early Marker of Human Ischemia-Reperfusion Injury. J Am Heart Assoc. 2018;7(8).
  • Grimolizzi F, Arranz L. Multiple faces of succi¬nate beyond metabolism in blood Haematologica. 2018 Oct; 103(10):1586–92. doi:10.3324/haema¬tol.2018.196097
  • Dodd MS, et al. Fatty Acids Prevent Hypoxia-In¬ducible Factor-1α Signaling Through Decreased Suc-cinate in Diabetes. JACC Basic Transl Sci. 2018 Aug 28;3(4):485-98. doi: 10.1016/j.jacbts.2018.04.005. eCollection 2018 Aug
  • Correa PR, et al. Succinate is a paracrine signal for liver damage. J Hepatol. 2007 Aug;47(2):262-9. doi: 10.1016/j.jhep.2007.03.016. Epub 2007 Apr 5. PMID: 17451837; PMCID: PMC1986575
  • Smolentsev SYu, et al. The use of ferrous succinate in combination with vitamins A and E for the preven¬tion of toxic liver dystrophy in piglets. Sys Rev Pharm 2020;11(11):273-80.
  • Zavodnik I.B., Lapshina E.A., Cheshchevik V.T., Dremza I.K. et al. Melatonin and succinate reduce rat liver mitochondrial dysfunction in diabetes. Journal of physiology and pharmacology. 2011;62(4):421-7.
  • Banerjee A, et al. Succinate Produced by Intesti¬nal Microbes Promotes Specification of Tuft Cells to Suppress Ileal Inflammation. Gastroenterology. 2020 Aug 21:S0016-5085(20)35068-X. doi: 10.1053/j.gastro.2020.08.029. Epub ahead of print. PMID: 32828819.
  • Chen TT, Maevsky EI, Uchitel ML. Maintenance of homeostasis in the aging hypothalamus: the cen¬tral and peripheral roles of succinate. Front. Endo¬crinol (Lausanne). 2015 Feb 2;6:7. doi: 10.3389/fen-do.2015.00007. eCollection 2015.
  • Lang TA, Secic M. How to Report Statistics in Med¬icine: Annotated Guidelines for Authors, Editors, and Reviewers. American College of Physicians. 1997. P.367.
  • Serebrovska ZO, et al. Hypoxia, HIF-1α, and COVID-19: from pathogenic factors to potential ther-apeutic targets. Acta Pharmacol Sin. 2020 Oct 27:1–8. doi: 10.1038/s41401-020-00554-8. Epub ahead of print. PMID: 33110240; PMCID: PMC7588589.
  • Nyhan WL, Busch H. Metabolic Patterns for Suc¬cinate-2-C4 in Tissues of Tumor-bearing Rats. Cancer Research. November, 1958;18:1203-8.
  • Peskov AB, et al. Placebo-controlled study of sympathico¬tonic effects of dietary supplements based on salts of succinic acid. Russian Biomedical Journal. 2005;6(158):508-14.
  • Kuznetsova YuB, et al. Efficiency of alternative ther¬apy in perimenopausal and postmenopausal women. Akusherstvo i ginekologiya. 2016;5:116-33. [in Russian]
  • Xuan Li, et al. Succinate Modulates Intestinal Barrier Function and Inflammation Response in Pigs. Biomole¬cules. 2019;9(9):486. https://doi.org/10.3390/biom9090486.
  • Fernández-Veledo S, Vendrell J. Gut microbio¬ta-derived succinate: friend or foe in human metabolic.
  • de Vadder F, Mithieux G. Gut-brain signaling in en¬ergy homeostasis: the unexpected role of microbiota-de¬rived succinate. J Endocrinol. 2018 Feb;236(2):R105-8. doi: 10.1530/JOE-17-0542. PMID: 29321189.
  • O'Donovan CM, et al. Distinct microbiome com¬position and metabolome exists across subgroups of elite Irish athletes. J Sci Med Sport. 2020 Jan;23(1):63-8. doi: 10.1016/j.jsams.2019.08.290. Epub 2019 Sep 18. PMID: 31558359.
  • Ryan DG, et al. Coupling Krebs cycle metabolites to signaling in immunity and cancer. Nature Metabolism. 2019;1:16–33. www.nature.com/natmetab/https://doi.org/10.1038/s42255-018-0014-7].
  • Shustov EB, Okovity SV. Ex-orphan receptors as targets for potential drugs. Biomedicine. 2015;2:15-29.
  • Frezza C. Mitochondrial metabolites: undercover signalling molecules. Interface Focus. 2017;7(2). doi: 10.1098/rsfs.2016.0100
Еще
Статья обзорная