Synthesis and structure of 6-amino-5-nitro-2-propargylsulfanyl-4(3H)-pyrimidinone

Бесплатный доступ

6-Amino-5-nitro-2-propargylsulfanyl-4(3 H )-pyrimidinone (1) has been synthesized for the first time by the reaction of 6-amino-5-nitroso-2-propargylsulfanyl-4(3 H )-pyrimidinone with tert -butyl hydroperoxide at equimolar ratio of the reactants leading to selective oxidation of nitroso group to a nitro one. The product is a crystalline substance, soluble in aromatic hydrocarbons, resistant to air oxygen and moisture. The compound has been characterized by IR and 1H NMR spectroscopy and X-ray diffraction analysis. The IR spectrum of 1 contains absorption bands at 3290 (NH2, st ), 2855 (S-CH2, st ), 1684 (C=O, st ) and 1595 (NO2, st ) cm-1. In the 1H NMR spectrum of 1 there are singlets of SCH2 protons at 3.87 ppm and С≡CH at 3.12 ppm. Downfield, there are singlets of NH2 group protons at 7.77 ppm and pyrimidine ring NH protons at 10.89 ppm. According to X-ray diffraction analysis data, in the crystal there are two types of crystallographically independent molecules, geometrical parameters of which are slightly different. X-ray diffraction data show that the crystal cell contains molecules of the used solvent, dimethylformamide. The planes of the nitro and thio groups are parallel to the plane of the heterocyclic fragment. C-NO2 and C-NH2 bond lengths are 1.452(2) and 1.317(2) Å, which is usual for compounds of these classes. The CAr-S distance is 1.748(2) Å. The structural arrangement of molecules in a crystal is due to O···H hydrogen bonding (1.91(2)-2.70(1) Å) and intermolecular N···O interactions (2.767(3)-2.984(3) Å). Also, there are face-to-face stacking interactions, the distances between centroids of aromatic rings are 4.13-4.46 Å.

Еще

6-amino-5-nitro-2-propargylsulfanyl-4(3h)-pyrimidinone, oxidation, structure, x-ray diffraction analysis, ir spectroscopy, 1h nmr spectroscopy

Короткий адрес: https://sciup.org/147236628

IDR: 147236628   |   DOI: 10.14529/chem220110

Список литературы Synthesis and structure of 6-amino-5-nitro-2-propargylsulfanyl-4(3H)-pyrimidinone

  • Togninelli A., Carmi C., Petricci E., Mugnaini C., Massa S., Corelli F., Botta M. Solution-phase Parallel Synthesis of S-DABO Analogues. Tetrahedron Lett., 2006, vol. 47, no. 1, pp. 65–67. DOI: 10.1016/J.TETLET.2005.10.142.
  • Janeba Z., Holý A., Snoeck R., Andrei G., Clercq E. De, Balzarini J. Synthesis and Antiviral Evaluation of 3-(2,3-Dihydroxypropyl)furo[2,3-d]pyrimidin-2(3H)-ones. Antiviral Res., 2010, vol. 1, no. 86, p. A57. DOI: 10.1016/J.ANTIVIRAL.2010.02.442.
  • Ondi L., Lefebvre O., Schlosser M. Brominated 4-(Trifluoromethyl)pyrimidines: A Convenient Access to Versatile Intermediates. European J. Org. Chem., 2004, vol. 2004, no. 17, pp. 3714–3718. DOI: 10.1002/EJOC.200400209.
  • Novakov I.A., Orlinson B.S., Brunilin R. V., Nawrozkij M.B., Savel’ev E.N., Novikova G.A. Synthesis of Novel N2-Adamantyl Derivatives of 2-Amino-6-methyl-4(3H)-pyrimidinone as PotentialActivators of Tumor Necrosis Factor (TNF) Release. Chem. Heterocycl. Compd., 2006, vol. 42, no. 10, pp. 1331–1333. DOI: 10.1007/S10593-006-0243-7.
  • Ali Abu-Hashem A., Abdel Raouf Hussein H. Synthesis and Antitumor Activity of New Pyrimidine and Caffeine Derivatives. Lett. Drug Des. Discov., 2015, vol. 12, no. 6, pp. 471–478. DOI: 10.2174/1570180812666150429234237.
  • Fathalla O.A., Awad S.M., Mohamed M.S. Synthesis of New 2-Thiouracil-5-sulphonamide Derivatives with Antibacterial and Antifungal Activity. Arch. Pharmacal Res., 2005, vol. 28, no. 11, pp. 1205–1212. DOI: 10.1007/BF02978199.
  • Wang S.-C., Wan F.-X., Liu S., Zhang S., Jiang L. Synthesis and Antifungal Activity Evaluation of Novel Substituted Pyrimidine-5-carboxamides Bearing the Pyridine Moiety. J. Chinese Chem. Soc., 2018, vol. 65, no. 4, pp. 445–451. DOI: 10.1002/JCCS.201700310.
  • Miyamoto Y. Synthesis and Antifungal Activity of [l,2,4]Triazolo-[1,5-c]-pyrimidine Derivatives. J. Pestic. Sci., 1986, vol. 11, no. 1, pp. 39–48. DOI: 10.1584/jpestics.11.39.
  • Sim O.G. Sintez Biologicheski Aktivnyh Novyh 5-Zameshchennyh Proizvodnyh 2-Aminopirimidin-4(3H)-ona [Synthesis of Biologically Active New 5-Substituted Derivatives of 2-Aminopyrimidine-4(3H)-one]. Avtoref. dis. … kand. farm. nauk. Volgograd, 2006. (in Russ)
  • Mohamed A.M., El-Sayed W.A., Ibrahim A.A., Abdel-Hafez N.A., Ali K.A.K., Mohamed S.F. Recent Trends in the Chemistry of [1,2,4]Triazole[1,5-a]pyrimidines. Org. Prep. and Proc. Int., 2021, vol. 53, no. 3, pp. 211–239. DOI: 10.1080/00304948.2020.1871310.
  • Kang D., Ruiz F.X., Sun Y., Feng D., Jing L., Wang Z., Zhang T., Gao S., Sun L., Clercq E. De, Pannecouque C., Arnold E., Zhan P., Liu X. 2,4,5-Trisubstituted Pyrimidines as Potent HIV-1 NNRTIs: Rational Design, Synthesis, Activity Evaluation, and Crystallographic Studies. J. Med. Chem., 2021, vol. 64, no. 7, pp. 4239–4256. DOI: 10.1021/ACS.JMEDCHEM.1C00268.
  • Abu-Zaied M.A., Elgemeie G.H., Mahmoud N.M. Anti-Covid-19 Drug Analogues: Synthesis of Novel Pyrimidine Thioglycosides as Antiviral Agents Against SARS-COV-2 and Avian Influenza H5N1 Viruses. ACS Omega, 2021, vol. 6, no. 26, pp. 16890–16904. DOI: 10.1021/ACSOMEGA.1C01501.
  • Kuhn R., van Klaveren W. Darstellung von o-Dinitro-Verbindungen. Berichte Der Dtsch. Chem. Gesellschaft (A B Ser.), 1938, vol. 71, no. 4, pp. 779–780. DOI: 10.1002/cber.19380710414.
  • Park J., Choi Y.M., Dyakov I. V., Lin M.C. An Experimental and Computational Study of the Thermal Oxidation of C6H5NO by NO2. J. Phys. Chem. A, 2002, vol. 106, no. 12, pp. 2903–2907. DOI: 10.1021/jp0135353.
  • Bamberger E. Ueber Die Oxydation Wässriger Arylhydroxylaminlösungen Durch Den Luftsauerstoff. Berichte Der Dtsch. Chem. Gesellschaft, 1900, vol. 33, no. 1, pp. 113–122. DOI: 10.1002/cber.19000330113.
  • Zuman P., Shah B. Addition, Reduction, and Oxidation Reactions of Nitrosobenzene. Chem. Rev., 1994, vol. 94, no. 6, pp. 1621–1641. DOI: 10.1021/cr00030a007.
  • Boyer J.H., Ellzey E. Oxidation of Nitrosoaromatic Compounds with Peroxytrifluoroacetic Acid. J. Org. Chem., 1959, vol. 24, no. 12, p. 2038. DOI: 10.1021/jo01094a616.
  • Taylor E.C., McKillop A. A New Synthesis of 5-Nitropyrimidines. J. Org. Chem., 1965, vol. 30, no. 9, pp. 3153–3155. DOI: 10.1021/jo01020a067.
  • Kim D.G., Osheko K.Y., Frolova T.V. Halocyclization of 2-Allyl(propargyl)sulfanyl-6-aminopyrimidin-4(3H)-ones. Russ. J. Org. Chem. 2017, 2018, vol. 53, no. 12, pp. 1899–1902. DOI: 10.1134/S1070428017120235.
  • Bruker (2000) SMART. Bruker Molecular Analysis Research Tool, Versions 5.625 Bruker AXS, Madison, Wisconsin, USA.
  • Bruker (2000) SAINTPlus Data Reduction and Correction Program, Versions 6.02a, Bruker AXS, Madison, Wisconsin, USA.
  • Dolomanov O.V., Bourhis L.J., Gildea R.J., Howard J.A.K., Puschmann H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr., 2009, vol. 42, no. 2, pp. 339–341. DOI: 10.1107/S0021889808042726.
  • Pretsch E., Bühlmann P., Badertscher M. Structure Determination of Organic Compounds: Tables of Spectral Data Structure Determination of Organic Compounds: Tables of Spectral Data. Springer Science & Business Media, Berlin, Heidelberg, 2009, p. 433. DOI: 10.1007/978-3-540-93810-1.
  • Pomés Hernández R., Duque Rodríguez J., García Trimiño M.I., Novoa de Armas H., Toscano R.A. 6-Methylamino-4-methylthio-5-nitro-2-phenylpyrimidine. Acta Crystallogr. Sect. C Cryst. Struct. Commun., 1995, vol. 51, no. 7, pp. 1392–1394. DOI: 10.1107/s0108270194013831.
  • Aakeröy C.B., Nieuwenhuyzen M., Price S.L. Three Polymorphs of 2-Amino-5-nitropyrimidine: Experimental Structures and Theoretical Predictions. J. Am. Chem. Soc., 1998, vol. 120, no. 35, pp. 8986–8993. DOI: 10.1021/ja981122i.
  • Batsanov S.S. Van Der Waals Radii of Elements. Inorg. Mater., 2001, vol. 37, no. 9, pp. 871–885. DOI: 10.1023/A:1011625728803.
Еще
Статья научная