Технологии иммунотерапии лимфоцитами с искусственными антигенными химерными рецепторами (CAR) в онкологии
Автор: Шишкин Александр Михайлович, Иванов Андрей Валерьевич, Боженко Владимир Константинович
Журнал: Вестник Российского научного центра рентгенорадиологии Минздрава России @vestnik-rncrr
Рубрика: Обзоры, лекции
Статья в выпуске: 4 т.16, 2016 года.
Бесплатный доступ
Терапия лимфоцитами с химерными антигенными рецепторами является активно развивающимся разделом иммунотерапии злокачественных опухолей. В обзоре рассмотрены принципы создания химерных рецепторов и рассмотрен опыт их клинического применения.
T-лимфоциты, адоптивная иммунотерапия, трансфекция, опухолевые антигены
Короткий адрес: https://sciup.org/14955531
IDR: 14955531
Список литературы Технологии иммунотерапии лимфоцитами с искусственными антигенными химерными рецепторами (CAR) в онкологии
- Грицай А.Н., Барановский Д.А., Киселевский М.В., Гуляева И.Л. Адоптивная иммунотерапия интерлейкином-2 и лимфокин-активированными киллерами у больных злокачественными новообразованиями женской репродуктивной системы.Опухоли женской репродуктивной системы. 2014. №. 4. С. 71-73.
- Сащенко Л.П. Молекулярные механизмы цитолитического действия лимфокинактивированных киллеров: автореферат дис.. доктора биологических наук: 03.00.03, 03.00.25. Ин-т биологии гена РАН. Москва. 1997.
- Титов К.С., Демидов Л.В., Шубина И.Ж. и др. Технологии клеточной иммунотерапии в лечении больных со злокачественными новообразованиями. Вестник Российского государственного медицинского университета 2014. №. 1. С. 42-47.
- Чикилева И.О., Шубина И.Ж., Киселевский М.В. Влияние регуляторных Т-клеток на функциональную активность натуральных киллеров при иммунотерапии злокачественных опухолей. Вестник РАМН 2012. №. 4. С. 60-64.
- Ярилин А.А. Иммунология -М.: ГЭОТАР-Медиа 2010.
- Acuto O., Michel F. CD28-mediated co-stimulation: a quantitative support for TCR signaling. Nature Reviews Immunology. 2003. V. 3. P. 939-951.
- Agraharkar M.L., Cinclair R.D., Kuo Y., et al. Risk of malignancy with long-term immunosuppression in renal transplant recipients. Kidney International. 2004. V. 66. P. 383-389.
- Ahmed N., Brawley V.S., Hegde M., et al. Human Epidermal Growth Factor Receptor 2 (HER2) -Specific Chimeric Antigen Receptor-Modified T Cells for the Immunotherapy of HER2Positive Sarcoma. Journal of Clinical Oncology 2015. V. 33. N. 15. P. 1688-1696.
- Allan C., Hafler D.A. Suppressor T cells in human diseases. J Exp Med. 2004. V. 200. P. 273-6.
- Barrett D.M., Zhao Y., Liu X., et al. Treatment of advanced leukemia in mice with mRNA engineered T cells. Human Gene Therapy. 2011. V. 22. N. 12. P. 1575-1586.
- Boissel L., Betancur M., Lu W., et al. Comparison of mRNA and lentiviral based transfection of natural killer cells with chimeric antigen receptors recognizing lymphoid antigens. Leuk Lymphoma. 2012. V. 53. N. 5. P. 958-65.
- Bonifant Ch.L., Jackson H.J., Brentjens R.J., Curran KJ. Toxicity and management in CAR T-cell therapy Molecular Therapy -Oncolytics 2016. V. 3. URL: http://dx.doi.o DOI: rg/10.1038/mto.2016.11
- Brentjens R., Yeh R., Bernal Y., et al. Treatment of Chronic Lymphocytic Leukemia With Genetically Targeted Autologous T Cells: Case Report of an Unforeseen Adverse Event in a Phase I Clinical Trial. Molecular Therapy. 2010. V. 18. N. 4. P. 666-668.
- Brownlie R.J, Zamoyska R. T cell receptor signalling networks: branched, diversified and bounded. Nature Reviews Immunology. 2013. V. 13. P. 257-269.
- Call ME, Pyrdol J, Wiedmann M, Wucherpfennig KW. The organizing principle in the formation of the T Cell receptor-CD3 complex. Cell. 2002. V. 111. N. 7. P. 967-79.
- Carpenito C., Milone M.C., Hassan R. Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. PNAS. 2009. V. 106. N. 9. P. 3360-3365.
- Cartellieri M., Bachmann M., Feldmann A., et al. Chimeric antigen receptor-engineered T cells for immunotherapy of cancer J Biomed Biotechnol. 2010. URL: http://dx.doi.o DOI: rg/10.1155/2010/956304
- Chen L., Flies D.B. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nature Reviews Immunology. 2013. V. 13. P. 227-242.
- Cheng J., Montecalvo A., Kane L.P. Regulation of NF-κB induction by TCR/CD28. Immunol. Res. 2011. V. 50(2-3). P. 113-117.
- Chmielewski M., Kopecky C., Hombach A.A., Abken H. IL-12 release by engineered T cells expressing chimeric antigen receptors can effectively muster an antigen-independent macrophage response on tumor cells that have shut down tumor antigen expression. Cancer Research. 2011. V. 71. N. 17. P. 5697-5706.
- Chowdhury D., Lieberman J. Death by a Thousand Cuts: Granzyme Pathways of Programmed Cell Death. Annu Rev Immunol. 2008. V. 26. P. 389-420.
- Croft M., So T., Duan W., Soroosh P. The significance of OX40 and OX40L to T-cell biology and immune disease. Immunol Rev. 2009. V. 229. N. 1. P. 173-191.
- Cronin S.J., Penninger J.M. From T-cell activation signals to signaling control of anti-cancer immunity. Immunol. Rev. 2007. V. 220. P. 151-168.
- Curiel T.J., Coukos G., Zou L., et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med. 2004. V. 10. P. 942949.
- Curran K.J., Pegram H.J., Brentjens R.J. Chimeric antigen receptors for T cell immunotherapy: current understanding and future directions. J Gene Med. 2012. V. 14. N. 6. P. 405415.
- Dong Ch., Juedes F.E., Temann A., et al. ICOS co-stimulatory receptor is essential for T-cell activation and function. Nature. 2001. V. 409. P. 97-101.
- Dotti G., Gottschalk S., Savoldo B., Brenner M.K. Design and development of therapies using chimeric antigen receptor-expressing T cells. Immunol Rev. 2014. V. 257. N. 1. P. 107-126.
- Emtage P.C., Lo A.S., Gomes E.M., et al. Second-generation anti-carcinoembryonic antigen designer T cells resist activation-induced cell death, proliferate on tumor contact, secrete cytokines, and exhibit superior antitumor activity in vivo: a preclinical evaluation. Clin Cancer Res. 2008. V. 14. N. 24. P. 8112-8122.
- Eshhar Z. Tumor-specific T-bodies: towards clinical application. Cancer Immunol Immunother. 1997. V. 45. N. 3-4. P. 131-136.
- Evans E.J., Esnouf R.M., Sancho R., et al. Crystal structure of a soluble CD28-Fab complex. Nat. Immunol. 2005. V. 6. N. 3. P. 271-279.
- Gamen S., Hanson D.A., Kaspar A., et al. Granulysin-induced apoptosis. I. Involvement ofat least two distinct pathways. J. Immunol. 1998. V. 161. P. 1758-1764.
- Gazzar A., Groh V., Spies T. Immunobiology and Conflicting Roles of the Human NKG2D Lymphocyte Receptor and Its Ligands in Cancer. Journal of Immunology. 2013. V. 191. N. 4. P. 1509-1515.
- Gool S.W., Vandenberghe P., Boer M., Ceuppens J.L. CD86 and CD40 provide accessory signals in a multiple-step T-Cell activation model. Immunological Reviews. 1996. N. 153. P. 47-83.
- Hammarstrom S. The carcinoembryonic antigen CEA family:structures, suggested functions and expression in normal and malignant tissues. Cancer Biology. 1999. V. 9. P. 67 -81.
- Haynes N.M., Snook M.B., Trapani J.A., et al. Redirecting mouse CTL against colon carcinoma: superior signaling efficacy of single-chain variable domain chimeras containing TCR-ζ vs FcεRI-γ. Journal of Immunology. 2001. V. 166. N. 1. P. 182-187.
- Hombach A.A., Abken H. Adoptive immunotherapy with genetically engineered T cells: modification of the IgG1 Fc spacer domain in the extracellular moiety of chimeric antigen receptors avoids off-target activation and unintended initiation of an innate immune response. Gene Therapy. 2010. V. 17. N. 10. P. 1206-1213.
- Hoves S., Trapani J.A., Voskoboinik I. The battlefield of perforin/granzyme cell death pathways. Journal of Leukocyte Biology. 2010. V. 87. N. 2. P. 237-243.
- Hoyos V., Savoldo B., Quintarelli C., et al. Engineering CD19-specific T lymphocytes with interleukin-15 and a suicide gene to enhance their anti-lymphoma/Leukemia effects and safety. Leukemia. 2010. V. 24. N. 6. P. 1160-1170.
- Hsu C., Jones S.A., Cohen C.J., et al. Cytokine-independent growth and clonal expansion of a primary human CD8+ T-cell clone following retroviral transduction with the IL-15 gene. Blood. 2007. V. 109. P. 5168-5177.
- Imai C., Mihara K., Andreansky M., et al. Chimeric receptors with 4-1BB signaling capacity provoke potent cytotoxicity against acute lymphoblastic Leukemia. Leukemia. 2004. V. 18. N. 4. P. 676-684.
- Jenkins M.R., Griffiths G.M. The synapse and cytolytic machinery of cytotoxic T cells. Curr Opin Immunol. 2010. V. 22. N. 3. P. 308-313.
- Kavurma M.M., Khachigian L.M. Signaling and transcriptional control of Fas ligand gene expression. Cell Death and Differentiation. 2003. V. 10. P. 36-44.
- Klebanoff CA, Acquavella N, Yu Z, Restifo NP. Therapeutic cancer vaccines: are we there yet? Immunol Rev. 2011. V. 239. N. 1. P. 27-44.
- Kochenderfer J.N., Dudley M.E., Feldman S.A., et al. B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigenreceptor-transduced T cells. Blood. 2012. V. 119. P. 2709-2720.
- Kowolik C.M., Topp M.S., Gonzalez S., et al. CD28 costimulation provided through a CD19specific chimeric antigen receptor enhances in vivo persistence and antitumor efficacy of adoptively transferred T cells. Cancer Research. 2006. V. 66. N. 22. P. 10995-11004.
- Kustikova O.S., Schiedlmeier B., Brugman M.H., et al. Cell-intrinsic and vector-related properties cooperate to determine the incidence and consequences of insertional mutagenesis. Mol Ther. 2009. V. 17. P. 1537-1547.
- Lamers C.H., Sleijfer S., Vulto A.G., et al. Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: first clinical experience. J Clin Oncol. 2006. V. 24(13). P. 20-22.
- Mace E.M., Dongre P., Hsu H.T., et al. Cell biological steps and checkpoints in accessing NK cell cytotoxicity. Immunology and Cell Biology. 2014. V. 92. P. 245-255.
- Maher J. Immunotherapy of Malignant Disease Using Chimeric Antigen Receptor Engrafted T Cells ISRN Oncology. 2012. V. 2012. URL: http://dx.doi.o DOI: rg/10.5402/2012/278093
- Milone M.C., Fish J.D., Carpenito C., et al. Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo. Mol Ther. 2009. V. 17. P. 1453-1464.
- Morgan R.A., Yang J.C., Kitano M., et al. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther. 2010. V. 18. N. 4. P. 843-851.
- Moschella F., Valentini M., Aricò E., et al. Unraveling cancer chemoimmunotherapy mechanisms by gene and protein expression profiling of responses to cyclophosphamide. Cancer Research. 2011. V. 71. N. 10. P. 3528-3539.
- Newrzela S., Cornils K., Heinrich T., et al. Retroviral insertional mutagenesis can contribute to immortalization of mature T lymphocytes. Molecular Medicine. 2011. V. 17. N. 11. P. 12231232.
- Nolan K.F., Yun C.O., Akamatsu Y., et al. Bypassing immunization: optimized design of "designer T cells" against carcinoembryonic antigen (CEA)-expressing tumors, and lack of suppression by soluble CEA. Clin Cancer Res. 1999. V. 5. N. 12. P. 3928-3941.
- Palacios E.H., Weiss A. Function of the Src-family kinases, Lck and Fyn, in T-cell development and activation. Oncogene. 2004. V. 23. P. 7990-8000.
- Papac R.J. Spontaneous regression of cancer: possible mechanisms. In Vivo. 1998. V. 12(6). P. 571-578.
- Parkhurst M.R., Joo J., Riley J.P., et al. Characterization of genetically modified T-cell receptors that recognize the CEA: 691-699 peptide in the context of HLA-A2.1 on human colorectal cancer cells. Clin Cancer Res. 2009. V. 15. N. 1. P. 169-80.
- Patel S.D., Moskalenko M., Smith D., et al. Impact of chimeric immune receptor extracellular protein domains on T cell function. Gene Therapy. 1999. V. 6. N. 3. P. 412-419.
- Pegram H.J., Lee J.C., Hayman E.G., et al. Tumor-targeted T cells modified to secrete IL-12 eradicate systemic tumors without need for prior conditioning. Blood. 2012. V. 119. N. 18. P. 41334141.
- Perna S.K., Pagliara D., Mahendravada A., et al. Interleukin-7 Mediates Selective Expansion of Tumor-redirected Cytotoxic T Lymphocytes (CTLs) without Enhancement of Regulatory T-cell Inhibition. Clin Cancer Res. 2014. V. 20. N. 1. P. 131.
- Podojil J.R., Miller S.D. Molecular mechanisms of T-cell receptor and costimulatory molecule ligation/blockade in autoimmune disease therapy. Immunol Rev. 2009. V. 229. N. 1. P. 337-355.
- Pule M.A., Savoldo B., Myers G.D., et al. Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma. Nature Medicine. 2008. V. 14. N. 11. P. 1264-1270.
- Quintarelli C., Vera J.F., Savoldo B. Co-expression of cytokine and suicide genes to enhance the activity and safety of tumor-specific cytotoxic T lymphocytes. Blood. 2007. V. 110. N. 8. P. 2793-2802.
- Riviere I., Dunbar C.E., Sadelain M. Hematopoietic stem cell engineering at a crossroads. Blood. 2012. V. 119. P. 1107-1116.
- Rossy J., Owen D.M., Williamson D.J., et al. Conformational states of the kinase Lck regulate clustering in early T cell signaling. Nat Immunol. 2013. V. 14. N. 1. P. 82-89.
- Russell J.H., Ley T.J. Lymphocyte-mediated cytotoxicity. Annu Rev Immunol. 2002. V. 20. P. 323-370.
- Sadelain M., Brentjens R., Riviere I. The basic principles of chimeric antigen receptor design. Cancer Discov. 2013. V. 3. N. 4. P. 388-398.
- Savoldo B., Ramos C.A., Liu E., et al. CD28 costimulation improves expansion and persistence of chimeric antigen receptor-modified T cells in lymphoma patients. J Clin Invest. 2011. V. 121. P. 1822-1826.
- Song D.G., Ye Q., Poussin M., et al. CD27 costimulation augments the survival and antitumor activity of redirected human T cells in vivo. Blood. 2012. V. 119. N. 3. P. 696-706.
- Till B.G., Jensen M.C., Wang J., et al. Adoptive immunotherapy for indolent non-Hodgkin lymphoma and mantle cell lymphoma using genetically modified autologous CD20-specific T cells. Blood. 2008. V. 112. N. 6. P. 2261-2271.
- Till B.G., Jensen M.C., Wang J., et al. CD20-specific adoptive immunotherapy for lymphoma using a chimeric antigen receptor with both CD28 and 4-1BB domains: pilot clinical trial results. Blood. 2012. V. 119. N. 17. P. 3940-3950.
- Trapani JA, Smyth MJ. Functional significance of the perforin/granzyme cell death pathway. Nat Rev Immunol. 2002. V. 2. N. 10. P. 735-747.
- Verhoeyen E., Costa C., Cosset F.L. Lentiviral vector gene transfer into human T cells. Methods Mol Biol. 2009. V. 506. P. 97-114.
- Waggoner S.N., Kumar V. Evolving role of 2B4/CD244 in T and NK cell responses during virus infection. Front Immunol. 2012. V. 3. P. 377.
- Waring P., Müllbacher A. Cell death induced by the Fas/Fas ligand pathway and its role in pathology/Immunol Cell Biol. 1999. V. 77. N. 4. P. 312-317.
- Wilkie S., Picco G., Foster J. Retargeting of human T cells to tumor-associated MUC1: the evolution of a chimeric antigen receptor. J Immunol. 2008. V. 180. N. 7. P. 4901-4909.
- Wilkie S, Schalkwyk MC, Hobbs S, et al. Dual targeting of ErbB2 and MUC1 in breast cancer using chimeric antigen receptors engineered to provide complementary signaling. journal of clinical immunology. 2012. V. 32. N. 5. P. 1059-1070.
- Wong C.P., Levy R. Recombinant adenovirus vaccine encoding a chimeric T-cell antigen receptor induces protective immunity against a T-cell lymphoma. Cancer Res. 2000. V. 60. N. 10. P. 2689-2695.
- Yoon S.H., Lee J.M., Cho H.I., et al. Adoptive immunotherapy using human peripheral blood lymphocytes transferred with RNA encoding Her-2neu-specific chimeric immune receptor in ovarian cancer xenograft model. Cancer Gene Therapy. 2009. V. 16. N. 6. P. 489-497.
- Zhang H., Ye Zl., Yuan Zg., et al. New Strategies for the Treatment of Solid Tumors with CAR-T Cells. Int J Biol Sci 2016. V. 12. N. 6. P. 718-729.
- Zhang T., Lemoi B.A., Sentman C.L. Chimeric NK-receptor-bearing T cells mediate antitumor immunotherapy. Blood. 2005. V. 106. N. 5. P. 1544-1551.
Статья обзорная