The application of MRNA vectors for CART therapy in vivo

Автор: Kulinich T.M., Bozhenko V.K., Ranjit R., Kaprin A.D.

Журнал: Вестник Российского научного центра рентгенорадиологии Минздрава России @vestnik-rncrr

Рубрика: Обзор

Статья в выпуске: 4 т.23, 2023 года.

Бесплатный доступ

CAR-T-lymphocyte therapy has revolutionized cancer immunotherapy because genetically modified T cells have made it possible to recognize the necessary tumor antigens. However, genetically modified T cells attack not only cancer cells but also other physiologically functioning cells that express a similar antigen on their cell surface. Another disadvantage of CAR-T-lymphocyte therapy is the associated cost, as mass production of the drug is not possible due to the need to genetically modify the patient's T cells. To address these problems, mRNA can be used to deliver genetic material to T lymphocytes. Since mRNA temporarily expresses its genetic material, side effects can be controlled by adjusting the amount of drug administered. In addition, the manufacturing process does not require the use of the patient's T cells, which means that the drug can be mass produced, reducing its cost.

Еще

Car-t, t-lymphocytes, mrna, tumours, immunotherapy

Короткий адрес: https://sciup.org/149145015

IDR: 149145015

Список литературы The application of MRNA vectors for CART therapy in vivo

  • Gonzalez H, Hagerling C, Werb Z. Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev. 2018 Oct 1;32(19-20):1267-1284. doi: 10.1101/gad.314617.118.
  • Waldman AD, Fritz JM, Lenardo MJ. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat Rev Immunol. 2020 Nov;20(11):651-668. doi: 10.1038/s41577-020-0306-5.
  • Mirzaei HR, Mirzaei H, Lee SY, Hadjati J, Till BG. Prospects for chimeric antigen receptor (CAR) γδ T cells: A potential game changer for adoptive T cell cancer immunotherapy. Cancer Lett. 2016 Oct 1;380(2):413-423. doi: 10.1016/j.canlet.2016.07.001.
  • Ribatti D, Crivellato E, Vacca A. Miller's seminal studies on the role of thymus in immunity. Clin Exp Immunol. 2006 Jun;144(3):371-375. doi: 10.1111/j.1365-2249.2006.03060.x.
  • Rosenberg SA, Spiess P, Lafreniere R. A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes. Science. 1986 Sep 19;233(4770):1318-1321. doi: 10.1126/science.3489291.
  • Eshhar Z, Waks T, Gross G, Schindler DG. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc Natl Acad Sci U S A. 1993 Jan 15;90(2):720-724. doi: 10.1073/pnas.90.2.720.
  • Hu KJ, Yin ETS, Hu YX, Huang H. Combination of CRISPR/Cas9 System and CAR-T Cell Therapy: A New Era for Refractory and Relapsed Hematological Malignancies. Curr Med Sci. 2021 Jun;41(3):420-430. doi: 10.1007/s11596-021-2391-5.
  • David RM, Doherty AT. Viral Vectors: The Road to Reducing Genotoxicity. Toxicol Sci. 2017 Feb;155(2):315-325. doi: 10.1093/toxsci/kfw220.
  • Wang D, Tai PWL, Gao G. Adeno-associated virus vector as a platform for gene therapy delivery. Nat Rev Drug Discov. 2019 May;18(5):358-378. doi: 10.1038/s41573-019-0012-9.
  • Hajitou A, Lev DC, Hannay JA, Korchin B, Staquicini FI, Soghomonyan S, et al. A preclinical model for predicting drug response in soft-tissue sarcoma with targeted AAVP molecular imaging. Proc Natl Acad Sci U S A. 2008 Mar 18;105(11):4471-4476. doi: 10.1073/pnas.0712184105.
  • Hajitou A, Rangel R, Trepel M, Soghomonyan S, Gelovani JG, Alauddin MM, et al. Design and construction of targeted AAVP vectors for mammalian cell transduction. Nat Protoc. 2007;2(3):523-531. doi: 10.1038/nprot.2007.51.
  • Hajitou A, Trepel M, Lilley CE, Soghomonyan S, Alauddin MM, Marini FC 3rd, et al. A hybrid vector for ligand-directed tumor targeting and molecular imaging. Cell. 2006 Apr 21;125(2):385-398. doi: 10.1016/j.cell.2006.02.042.
  • Pranjol MZ, Hajitou A. Bacteriophage-derived vectors for targeted cancer gene therapy. Viruses. 2015 Jan 19;7(1):268-284. doi: 10.3390/v7010268.
  • Lang LH. FDA approves use of bacteriophages to be added to meat and poultry products. Gastroenterology. 2006 Nov;131(5):1370. doi: 10.1053/j.gastro.2006.10.012.
  • Atterbury RJ. Bacteriophage biocontrol in animals and meat products. Microb Biotechnol. 2009 Nov;2(6):601-612. doi: 10.1111/j.1751-7915.2009.00089.x.
  • Zhang Y, Yu LC. Microinjection as a tool of mechanical delivery. Curr Opin Biotechnol. 2008 Oct;19(5):506-510. doi: 10.1016/j.copbio.2008.07.005.
  • Stevenson DJ, Gunn-Moore FJ, Campbell P, Dholakia K. Single cell optical transfection. J R Soc Interface. 2010 Jun 6;7(47):863-871. doi: 10.1098/rsif.2009.0463.
  • Hewapathirane DS, Haas K. Single cell electroporation in vivo within the intact developing brain. J Vis Exp. 2008 Jul 11;(17):705. doi: 10.3791/705.
  • Christou P, McCabe DE, Swain WF. Stable Transformation of Soybean Callus by DNA-Coated Gold Particles. Plant Physiol. 1988 Jul;87(3):671-674. doi: 10.1104/pp.87.3.671.
  • Klein RM, Wolf ED, Wu R, Sanford JC. High-velocity microprojectiles for delivering nucleic acids into living cells. 1987. Biotechnology. 1992;24:384-386.
  • Lin MT, Pulkkinen L, Uitto J, Yoon K. The gene gun: current applications in cutaneous gene therapy. Int J Dermatol. 2000 Mar;39(3):161-170. doi: 10.1046/j.1365-4362.2000.00925.x.
  • Yang CH, Shen SC, Lee JC, Wu PC, Hsueh SF, Lu CY, et al. Seeing the gene therapy: application of gene gun technique to transfect and decolour pigmented rat skin with human agouti signalling protein cDNA. Gene Ther. 2004 Jul;11(13):1033-1039. doi: 10.1038/sj.gt.3302264.
  • Jiao S, Cheng L, Wolff JA, Yang NS. Particle bombardment-mediated gene transfer and expression in rat brain tissues. Biotechnology (N Y). 1993 Apr;11(4):497-502. doi: 10.1038/nbt0493-497.
  • O'Brien JA, Holt M, Whiteside G, Lummis SC, Hastings MH. Modifications to the hand-held Gene Gun: improvements for in vitro biolistic transfection of organotypic neuronal tissue. J Neurosci Methods. 2001 Nov 15;112(1):57-64. doi: 10.1016/s0165-0270(01)00457-5.
  • Wirth MJ, Wahle P. Biolistic transfection of organotypic cultures of rat visual cortex using a handheld device. J Neurosci Methods. 2003 May 30;125(1-2):45-54. doi: 10.1016/s0165-0270(03)00024-4.
  • Monjezi R, Miskey C, Gogishvili T, Schleef M, Schmeer M, Einsele H, Ivics Z, Hudecek M. Enhanced CAR T-cell engineering using non-viral Sleeping Beauty transposition from minicircle vectors. Leukemia. 2017 Jan;31(1):186-194. doi: 10.1038/leu.2016.180.
  • Shi J, Ma Y, Zhu J, Chen Y, Sun Y, Yao Y, Yang Z, Xie J. A Review on Electroporation-Based Intracellular Delivery. Molecules. 2018 Nov 21;23(11):3044. doi: 10.3390/molecules23113044.
  • Zhang Z, Qiu S, Zhang X, Chen W. Optimized DNA electroporation for primary human T cell engineering. BMC Biotechnol. 2018 Jan 30;18(1):4. doi: 10.1186/s12896-018-0419-0.
  • Pagant S, Liberatore RA. In Vivo Electroporation of Plasmid DNA: A Promising Strategy for Rapid, Inexpensive, and Flexible Delivery of Anti-Viral Monoclonal Antibodies. Pharmaceutics. 2021 Nov 6;13(11):1882. doi: 10.3390/pharmaceutics13111882.
  • Heller LC, Heller R. Electroporation gene therapy preclinical and clinical trials for melanoma. Curr Gene Ther. 2010 Aug;10(4):312-317. doi: 10.2174/156652310791823489.
  • Byagathvalli G, Sinha S, Zhang Y, Styczynski MP, Standeven J, Bhamla MS. ElectroPen: An ultra-low-cost, electricity-free, portable electroporator. PLoS Biol. 2020 Jan 10;18(1):e3000589. doi: 10.1371/journal.pbio.3000589.
  • Kwon M, Firestein BL. DNA transfection: calcium phosphate method. Methods Mol Biol. 2013;1018:107-110. doi: 10.1007/978-1-62703-444-9_10.
  • Gulick T. Transfection using DEAE-dextran. Curr Protoc Cell Biol. 2003 Aug;Chapter 20:Unit 20.4. doi: 10.1002/0471143030.cb2004s19.
  • Sariyer IK. Transfection of neuronal cultures. Methods Mol Biol. 2013;1078:133-139. doi: 10.1007/978-1-62703-640-5_11.
  • Keller AA, Maeß MB, Schnoor M, Scheiding B, Lorkowski S. Transfecting Macrophages. Methods Mol Biol. 2018;1784:187-195. doi: 10.1007/978-1-4939-7837-3_18.
  • Maeß MB, Wittig B, Lorkowski S. Highly efficient transfection of human THP-1 macrophages by nucleofection. J Vis Exp. 2014 Sep 2;(91):e51960. doi: 10.3791/51960.
  • Maeß MB, Keller AA, Rennert K, Mosig A, Lorkowski S. Optimization of the transfection of human THP-1 macrophages by application of Nunc UpCell technology. Anal Biochem. 2015 Jun 15;479:40-42. doi: 10.1016/j.ab.2014.12.023.
  • Zhang X, Mosser DM. Macrophage activation by endogenous danger signals. J Pathol. 2008 Jan;214(2):161-178. doi: 10.1002/path.2284.
  • Oh S, Kessler JA. Design, Assembly, Production, and Transfection of Synthetic Modified mRNA. Methods. 2018 Jan 15;133:29-43. doi: 10.1016/j.ymeth.2017.10.008.
  • Weissman D, Karikó K. mRNA: Fulfilling the Promise of Gene Therapy. Mol Ther. 2015 Sep;23(9):1416-1417. doi: 10.1038/mt.2015.138.
  • Sahin U, Karikó K, Türeci Ö. mRNA-based therapeutics--developing a new class of drugs. Nat Rev Drug Discov. 2014 Oct;13(10):759-780. doi: 10.1038/nrd4278.
  • Zou S, Scarfo K, Nantz MH, Hecker JG. Lipid-mediated delivery of RNA is more efficient than delivery of DNA in non-dividing cells. Int J Pharm. 2010 Apr 15;389(1-2):232-243. doi: 10.1016/j.ijpharm.2010.01.019.
  • Youn H, Chung JK. Modified mRNA as an alternative to plasmid DNA (pDNA) for transcript replacement and vaccination therapy. Expert Opin Biol Ther. 2015;15(9):1337-1348. doi: 10.1517/14712598.2015.1057563.
  • Warren L, Manos PD, Ahfeldt T, Loh YH, Li H, Lau F, et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell. 2010 Nov 5;7(5):618-630. doi: 10.1016/j.stem.2010.08.012.
  • Feins S, Kong W, Williams EF, Milone MC, Fraietta JA. An introduction to chimeric antigen receptor (CAR) T-cell immunotherapy for human cancer. Am J Hematol. 2019 May;94(S1):S3-S9. doi: 10.1002/ajh.25418.
  • Charkhchi P, Cybulski C, Gronwald J, Wong FO, Narod SA, Akbari MR. CA125 and Ovarian Cancer: A Comprehensive Review. Cancers (Basel). 2020 Dec 11;12(12):3730. doi: 10.3390/cancers12123730.
  • Hudecek M, Sommermeyer D, Kosasih PL, Silva-Benedict A, Liu L, Rader C, et al. The nonsignaling extracellular spacer domain of chimeric antigen receptors is decisive for in vivo antitumor activity. Cancer Immunol Res. 2015 Feb;3(2):125-135. doi: 10.1158/2326-6066.CIR-14-0127.
  • Harris DT, Kranz DM. Adoptive T Cell Therapies: A Comparison of T Cell Receptors and Chimeric Antigen Receptors. Trends Pharmacol Sci. 2016 Mar;37(3):220-230. doi: 10.1016/j.tips.2015.11.004.
  • Minutolo NG, Hollander EE, Powell DJ Jr. The Emergence of Universal Immune Receptor T Cell Therapy for Cancer. Front Oncol. 2019 Mar 26;9:176. doi: 10.3389/fonc.2019.00176.
  • Strohl WR, Naso M. Bispecific T-Cell Redirection versus Chimeric Antigen Receptor (CAR)-T Cells as Approaches to Kill Cancer Cells. Antibodies (Basel). 2019 Jul 3;8(3):41. doi: 10.3390/antib8030041.
  • Gross G, Waks T, Eshhar Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci U S A. 1989 Dec;86(24):10024-10028. doi: 10.1073/pnas.86.24.10024.
  • Zhao L, Cao YJ. Engineered T Cell Therapy for Cancer in the Clinic. Front Immunol. 2019 Oct 11;10:2250. doi: 10.3389/fimmu.2019.02250.
  • Bagley SJ, O'Rourke DM. Clinical investigation of CAR T cells for solid tumors: Lessons learned and future directions. Pharmacol Ther. 2020 Jan;205:107419. doi: 10.1016/j.pharmthera.2019.107419.
  • Pegram HJ, Park JH, Brentjens RJ. CD28z CARs and armored CARs. Cancer J. 2014 Mar-Apr;20(2):127-133. doi: 10.1097/PPO.0000000000000034.
  • Kalos M, Levine BL, Porter DL, Katz S, Grupp SA, Bagg A, June CH. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med. 2011 Aug 10;3(95):95ra73. doi: 10.1126/scitranslmed.3002842.
  • Cheadle EJ, Gornall H, Baldan V, Hanson V, Hawkins RE, Gilham DE. CAR T cells: driving the road from the laboratory to the clinic. Immunol Rev. January 2014; 257(1):91–106. https://doi.org/10.1111/IMR.12126.
  • Chmielewski M, Abken H. TRUCKs: the fourth generation of CARs. Expert Opin Biol Ther. August 1, 2015; 15(8):1145–1154. https://doi.org/10.1517/14712598.2015.1046430.
  • Brudno JN, Kochenderfer JN. Recent advances in CAR T-cell toxicity: Mechanisms, manifestations and management. Blood Rev. 2019 Mar;34:45-55. doi: 10.1016/j.blre.2018.11.002.
  • Maude SL, Barrett D, Teachey DT, Grupp SA. Managing cytokine release syndrome associated with novel T cell-engaging therapies. Cancer J. March 2014; 20(2):119–122. doi:10.1097/PPO.0000000000000035.
  • Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. October 16, 2014; 371(16):1507–17. doi: 10.1056/NEJMOA1407222.
  • Hunter BD, Jacobson CA. CAR T-Cell Associated Neurotoxicity: Mechanisms, Clinicopathologic Correlates, and Future Directions. J Natl Cancer Inst. 2019 Jul 1;111(7):646-654. doi: 10.1093/jnci/djz017. PMID: 30753567.
  • Graham C, Hewitson R, Pagliuca A, Benjamin R. Cancer immunotherapy with CAR-T cells - behold the future. Clin Med (Lond). 2018 Aug;18(4):324-328. doi: 10.7861/clinmedicine.18-4-324.
  • Lyman GH, Nguyen A, Snyder S, Gitlin M, Chung KC. Economic Evaluation of Chimeric Antigen Receptor T-Cell Therapy by Site of Care Among Patients With Relapsed or Refractory Large B-Cell Lymphoma. JAMA Netw Open. 2020 Apr 1;3(4):e202072. doi: 10.1001/jamanetworkopen.2020.2072. Erratum in: JAMA Netw Open. 2020 Apr 1;3(4):e208117.
  • Drent E, Themeli M, Poels R, de Jong-Korlaar R, Yuan H, de Bruijn J, et al. A Rational Strategy for Reducing On-Target Off-Tumor Effects of CD38-Chimeric Antigen Receptors by Affinity Optimization. Mol Ther. 2017 Aug 2;25(8):1946-1958. doi: 10.1016/j.ymthe.2017.04.024.
  • Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines - a new era in vaccinology. Nat Rev Drug Discov. 2018 Apr;17(4):261-279. doi: 10.1038/nrd.2017.243.
  • Smits E, Ponsaerts P, Lenjou M, Nijs G, Van Bockstaele DR, Berneman ZN, Van Tendeloo VF. RNA-based gene transfer for adult stem cells and T cells. Leukemia. 2004 Nov;18(11):1898-1902. doi: 10.1038/sj.leu.2403463.
  • Riley RS, June CH, Langer R, Mitchell MJ. Delivery technologies for cancer immunotherapy. Nat Rev Drug Discov. 2019 Mar;18(3):175-196. doi: 10.1038/s41573-018-0006-z.
  • Barrett DM, Zhao Y, Liu X, Jiang S, Carpenito C, Kalos M, et al. Treatment of advanced leukemia in mice with mRNA engineered T cells. Hum Gene Ther. 2011 Dec;22(12):1575-86. doi: 10.1089/hum.2011.070.
  • Zhao Y, Moon E, Carpenito C, Paulos CM, Liu X, Brennan AL, et al. Multiple injections of electroporated autologous T cells expressing a chimeric antigen receptor mediate regression of human disseminated tumor. Cancer Res. 2010 Nov 15;70(22):9053-9061. doi: 10.1158/0008-5472.CAN-10-2880.
  • Foster JB, Choudhari N, Perazzelli J, Storm J, Hofmann TJ, Jain P, et al. Purification of mRNA Encoding Chimeric Antigen Receptor Is Critical for Generation of a Robust T-Cell Response. Hum Gene Ther. 2019 Feb;30(2):168-178. doi: 10.1089/hum.2018.145.
  • Barrett DM, Singh N, Porter DL, Grupp SA, June CH. Chimeric antigen receptor therapy for cancer. Annu Rev Med. 2014;65:333-347. doi: 10.1146/annurev-med-060512-150254.
  • Beatty GL, Haas AR, Maus MV, Torigian DA, Soulen MC, Plesa G, et al. Mesothelin-specific chimeric antigen receptor mRNA-engineered T cells induce anti-tumor activity in solid malignancies. Cancer Immunol Res. 2014 Feb;2(2):112-120. doi: 10.1158/2326-6066.CIR-13-0170. Erratum in: Cancer Immunol Res. 2015 Feb;3(2):217.
  • Rurik JG, Tombácz I, Yadegari A, Méndez Fernández PO, Shewale SV, Li L, et al. CAR T cells produced in vivo to treat cardiac injury. Science. 2022 Jan 7;375(6576):91-96. doi: 10.1126/science.abm0594.
Еще
Статья научная