The bijectivity criterion, continuum hypothesis, and number sequence and series without some dogmas

Автор: Sukhotin Aleksandr

Журнал: Бюллетень науки и практики @bulletennauki

Рубрика: Физико-математические науки

Статья в выпуске: 12 (13), 2016 года.

Бесплатный доступ

N Introduction, we give the Alternative decision of David Hilbert’s first Problem. Our paper contains demonstrative denying a hypothesis about the existence of a bijection between a set of positive integers and its own subset. This statement is a basis of an alternative methodology, in which a significant tool is the concept of С- ( m, k )- pair of natural variables. We define e-divergence and w-convergence of number sequences with this methodology. In particular, the equality is a characteristic feature for a w-converging number sequence. We proved that the set of Cauchy sequences coincides with the set of w-converging ones and, hence, contains a subset of the infinite large sequences; everyone from them converges to corresponding infinite large number ( ILN ). In particular, a harmonic series converges to the some ILN, and the necessary attribute of some number series convergence is also a sufficient one.

Еще

Bijectivity criterion, continuum hypothesis, c-(m, k)-пара, k)-pair, cauchy sequences, e-divergence, w-сходимость, w-convergence, infinite large number, alternative methodology, infinite larger number, quantity of prime numbers, maximal prime, alternative number series, dogmas

Еще

Короткий адрес: https://sciup.org/14110755

IDR: 14110755   |   DOI: 10.5281/zenodo.204583

Список литературы The bijectivity criterion, continuum hypothesis, and number sequence and series without some dogmas

  • Sukhotin A. M. About a some false promise//Ukrainian Mathematical Congress (UMC’2001), International Conference on Functional Analysis, August 21-August 26, 2001, Kiev, Ukraine: Abstracts. Kiev: Institute of Mathematics, Ukrainian National Academy of Sciences, 2001. P. 92.
  • Cantor G. The works on the sets theory: Translation from Germany. Moscow, Nauka, 1985. 430 p..
  • Cohen P. J. Set theory and continuum hypothesis. Princeton-New Jersey-Toronto-New York: D. Van Nostrand Company, 1958.
  • Sukhotin A. M. The beginning of high Mathematics. Tomsk: Publishing house TPU, 2008. 164 p..
  • Weisstein, Eric W. CRC Concise Encyclopedia of Mathematics. 2nd ed. London-New York: Chapman&Hall/CRC, 2002.
  • Fikhtengolts, G M. Course of differential and integral calculus. Moscow: Science, 1967. V. 2..
  • Gordon, E. I., Kusraev, A., Kutateladzе, S. S. The Infinitezimal analysis. Crandal R., Pomerace C. Prime numbers. A Computation Perspective: Second Edition. Springer, 2005. 663 p. V. 1. Novosibirsk: Publishing house of Institute of Mathematics, 2001..
  • Crandal R., Pomerace C. Prime numbers. A Computation Perspective: Second Edition. Springer, 2005. 663 p.
  • Riemann, B. Works. Leningrad: GosTexIzdat, 1948..
  • Сухотин А. М., Тарбокова Т. В. Высшая математика. Альтернативная методика преподавания: учебное пособие для прикладного бакалавриата. М.: Юрайт, 2016. 224 с.
Еще
Статья научная