The metabolism rationale for applying of succinate-based compositions to maintain high performance in a human organism.

Автор: Maevsky Eugene I., Vasilieva Anna A., Grishina Elena V., Uchitel Mikhail L., Bogdanova Lyudmila A., Kozhurin Mikhail V.

Журнал: Cardiometry @cardiometry

Рубрика: Review

Статья в выпуске: 16, 2020 года.

Бесплатный доступ

Design of an effective succinate-based agent for the use in sports has required a profound analysis of the main action mechanisms of the agent in question. Our paper reflects basic principles, which are decisive for the design of the offered succinate-based agent to increase the organism performance and the rate of recovery after intensive physical loading. We have treated a special role of the metabolic conversions of succinate in energy exchange of mithochondria: high energy efficiency, possibility of beneficial oxidation under oxygen deprivation, anaerobic formation and possible consequences of the above phenomenon. The listed key factors have determined the applications of succinate in practice in order to maintain the energy exchange as well as design a number of anti-hypoxia means. It is assumed that the treated peculiarities of the succinate metabolism can provide the basis for formation of a signal, regulatory role of this molecule in the organism environment.

Еще

Succinate, metabolism, succinic acid, hypoxia

Короткий адрес: https://sciup.org/148311457

IDR: 148311457   |   DOI: 10.12710/cardiometry.2020.16.1525

Список литературы The metabolism rationale for applying of succinate-based compositions to maintain high performance in a human organism.

  • Moshkov NN. Unknown about the known. Healing warmth of amber. Beauty, Health and Longevity from nature. Kaliningrad, 2009, 148 p. [in Russian]
  • Hager, Hermann Praxis für Apotheker, Ärzte, Dro¬gisten, und Medizinalbeamte. 1816-1897. (Fischer, Bernhard, Hartwich, Carl. Publisher Berlin: J. Spring¬er. 1856-1905)
  • Hagers Handbuch der Pharmazeutischen Praxis. Folgeband 5: Stoffe L-Z. Herausgeber: Bruchhausen, F., Ebel, S., Hackenthal, E., Holzgrabe, U. (Hrsg.). Springer, Berlin. 1999.
  • Battelli F, et al. Chapter VI p.149-223. In: Respirato¬ry enzymes, ed. by Lardy HA. 1949.
  • Gozsy B, Szent-Gyorgyi A. On the mechanism of primary respiration in pigeon breast muscle. Hoppe. Seylers Z. Physiol. Chem. 1934, 224:1-10.
  • Krebs HA, Johnson WA. The role of citric acid in intermediate metabolism in animal tissues. Enzymo-logia. 1937; 4:148-156;]
  • Saratikov AS, Khazanov VA Kondrashova MN, Gold¬berg JM. A medicament for the treatment of cerebral isch¬emia RF patent No.2 108 095 C1. 10.04.1998. [in Russian]
  • Isakov VA, Sologub TV, Kovalenko AL, Romantsov MG. Reamberin in therapy of critical states, NTFF "Polysan" St. Petersburg the. 2002. [in Russian]
  • Kondrashova MN, et al. The agent for preventing and treating human meteopaticheskih reactions meth¬od for prophylaxis and treatment of these reactions and dosage forms means. RF Patent No. 2175228. 2001.10 [in Russian]
  • Maevsky EI, Uchitel ML. Tool and a set for the nor¬malization of functional disorders that occur in peri-menopause and menopause. RF Patent No. 2220712 10.01 2004 [in Russian]
  • Kaminsky YG, et al. Agent with actoprotective ac¬tivity. RF Patent No. 2121836. 29.11.1998; [in Russian]
  • Maevsky EI, Kozhurin MV, Maevskaya ME. For¬mulations and dosage forms for enhancing perfor¬mance or recovery from stress. No.WO/2019/099731. Posted: 23.05.2019].
  • Kashlinskiy А, et al. RF Patent No. 2 160 589. Бюл. № 35. 20.12.2000 [in Russian]
  • Komissarova IA, et al. RF Patent No. 2 039 556, Posted:20.07.1995. [in Russian]
  • Yevglevsky AA, et al. The drug for metabolic cor¬rection and enhance the natural resistance of animals. RF Patent No. 2447886 Posted: 20.04.2012 [in Russian]
  • Therapeutic action of succinic acid. [Collection of articles], ed. by Kondrashova MN. - Pushchino: Sci. Center biol. Research USSR, 1976. 234 p. [in Russian]
  • Mitochondrial processes in the time of life organi¬zation, material-Union seminar "regulation of energy metabolism and physiological state" [Collection of arti¬cles]. NCBI USSR. Pushchino, 1978. 182 p; [in Russian]
  • Succinic acid in medicine, food industry, agriculture [Collection of articles], ed. by Kondrashova MN, Ka-minsky YG, Maevsky EI. Pushchino. Institute of Theor. and Experimental. Biophysics, 1996. 299 p. [in Russian]
  • Chance B, Hollunger G. The interaction of ener¬gy and electron transfer reaction in mitochondria. 1 General properties and nature of the products of suc¬cinate-linked reduction and of pyridine nucleotide. J. Biol. Chem. 1961;236(5):1534-43.
  • Kondrashova MN. Biochemical excitation cycle. Proc. Mitochondria. Enzymatic processes and their reg-ulation. Moscow: Nauka. 1968. С. 121-131. [in Russian]
  • Kondrashova MN. Role of succinic acid in the physiological state of tissue regulation. Doctor. diss. Pushchino, 1970. [in Russian]
  • Kondrashova MN. The regulation of energy me¬tabolism and the body's resistance. [Collection of arti-cles] NCBI USSR. Pushchino. 1975. [in Russian]
  • Maevsky EI, et al. Correction of metabolic acidosis by maintaining mitochondrial function. Pushchino. ITEB RAS 2001. 155 p. [in Russian]
  • Caro CG, et al. Seed The mechanics of the circu¬lation. Oxford. Oxford University. Press. NY, Toronto 1978. Trans. from English. M .: Mir. 1981. 624 p. [in Russian]
  • Johnson PK. Peripheral circulation. Trans. from English. M.: Medicine, 1982. 440 p. [in Russian]
  • Gnaiger E, Kuznetsov AV. Mitochondrial respira¬tion at low levels of oxygen and cytochrome c. Bio¬chem Soc Trans. 2002; 30(2): 252-8.
  • Solaini G, et al. Hypoxia and mitochondrial oxi¬dative metabolism. Biochimica et Biophysica Acta (BBA) Bioenergetics. 2010;1797(6–7):1171-7. doi.org/10.1016/j.bbabio.2010.02.011
  • Lukyanova LD, et al. Oxygen-dependent process¬es in the cell and its functional state. Moscow: Nauka, 1982. 301 с [in Russian]
  • Scholz R, et al. Flavin and pyridine nucleotide ox¬idation-reduction changes in perfused rat liver. I. An-oxia and subcellular localization of fluorescent flavo¬proteins. J Biol Chem. 1969. 10;244(9):2317-24.
  • Kondrashov MN, Majewski EI Babayan GI. Ad¬aptation to hypoxic metabolism by switching on the conversion of succinic acid. Proc. Mitochondria. Bio¬chemistry and ultrastructure. Мoscow: Nauka. 1973. p.112-129. [in Russian]
  • Yaguzhinskii NS, et al. The hydrophobic sites of enzymes of the initial section of mitochondrial elec¬tron transport system. Dokl. USSR Academy of Sci¬ences. 1972;205(3):734-7. [in Russian]
  • Yaguzhinskii HP, Hoshin FM, Kolesov GM, Smirnova EG Hydrophobic areas and electrophilic centers of the system of oxidative phosphorylation of mitochondria. In the book .: Mitochondria. Biochem¬istry and ultrastructure. Мoscow, 1973, p. 24-40 [in Russian]
  • Kahl A, et al. Critical Role of Flavin and Gluta¬thione in Complex I-Mediated Bioenergetic Fail¬ure in Brain Ischemia/Reperfusion Injury. Stroke. 2018 May;49(5):1223-31. doi: 10.1161/STROKE AHA.117.019687.
  • Stepanova A, et al. Redox-Dependent Loss of Fla¬vin by Mitochondrial Complex I in Brain Ischemia/Reperfusion Injury. Antioxid Redox Signal. 2019 Sep 20;31(9):608-622. doi: 10.1089/ars.2018.7693.
  • Galkin A, et al. Lack of Oxygen Deactivates Mito¬chondrial Complex I. Implications for ischemic injury? J. Biol. Chem. 2009;284(52):36055–61. Doi:10.1074/jbc.M109.054346.
  • Chance B, Williams GR. Respiratory enzymes in oxidative phosphorylation/ I-V. J. Bio;. Chem. 1955;217(1):383-457.
  • Von Korff RW. Changes in metabolic control sites of rabbit heart mitochondria. Nature. 1967;214:23-6.
  • Volkov MS, et al. Glutamic acid. Biochemical ra¬tionale for practical use. Sverdlovsk. Mid-Ural book publishing. 1975. 119 p. [in Russian]
  • Maevsky E.I., et al. Decrease in the respiratory coefficient is a consequence of predominant oxida¬tion of flavosubstrates in hypoxia. Hypoxia Medical J. 1998;6:49-50.
  • Pisarenko OI, Khlopkov VN, Ruuge EK. A 1H NMR study of succinate synthesis from exogenous precursors in oxygen-deprived rat heart mitochon¬dria. Biochem. Int. 1986;12(1):145-53.
  • Cascarano L, et al. Hypoxia: a succinate-fumarate electron shuttle between peripheral cells and lung. J. exp. Zool. 1976;198:149-54.
  • Taegtmeyer H. Metabolic response to cardiac hy¬poxia. Increased production of succinate by rabbit papillary muscles. Circ. Res. 1978;43:808-15.
  • Peuhkurinen KJ, et al. Tricarboxylic acid cycle metabolites during ischemia in isolated perfused rat heart. Am. J. Physiol. 1983;244:H281-8.
  • Pisarenko OI, Solomatina ES, Studneva IM, et al. Effect of glutamic and aspartic acids on adenine nucle-otides, nitrogen compounds and contractile unction during underperfusion of isolated rat heart. J. Mol. Cell. Cardiol. 1983;15:53-60.
  • Sogabe H. Effects of L-malate on ischemic myocar¬dium experimental study. J. Jap. Assoc. Thorac. Surg. 1983. p. 1537-1543.
  • Hohl C, et al. Evidence for succinate рroduction by reduction of fumarate during hypoxia in isolat¬ed adult rat heart cells. Arch. Biochem. Biophys. 1987;259(2):527-35.
  • Pisarenko OI, et al. Formation of products of an¬aerobic metabolism in the ischemic myocardium. Bio-chemistry, 1988;53(3):491-6. [in Russian]
  • Hochachka PW, Owen TG, Allen JF, Witton GC. Multiple products of anaerobiosis in diving verte¬brates. Comp. Biochem. Physiol. 1975;508:17-22.
  • Krebs HA, Cohen PP. Metabolism of alpha-ke¬toglutaric acid in animal tissues. Biochem J. 1939 Nov;33(11):1895–9.
  • Maevsky EI, et al. Anaerobic formation of suc¬cinate and facilitating its okisleniya- possible mech¬anisms of cell adaptation to hypoxia. Biophysics. 2000;45(3):509-13. [in Russian]
  • Hunter FE. Anaerobic phosphorylation due to a coupled oxidation-reduction between ketoglutaric acid and oxalacetic acid. J. Biol. Chem. 1949;177:361-72.
  • Sanadi DR, Fluharty AL. On the mechanisms of oxidative phosphorylation. VII. The energy-requiring reduction of pyrine nucleotide by succinate and the energy-yielding oxidation of reduced pyridine nucleo¬tide by fumarate. Biochemistry. 1963. P. 523-528.
  • Wilson MA, Cascarano J. The energy-yielding ox¬idation of NADH by fumarate in submitochondrial particles of rat tissues. B.B.A. 1970;216:54-62.
  • Cascarano J, Ades IZ, O'Connor JD. Hypoxia: A succinate-fumarate electron shuttle between periph¬eral cells and lung Comparative Physiology and Bio¬chemistry. 1976;198, 2.
  • Grivennikova VG, Gavrikova EV, Timoshin AA, Vinogradov AD. Fumarate reductase activity of bo¬vine heart succinate-ubiquinone reductase. New assay system and overall properties of the reaction. B.B.A. 1993 Jan; 1140(3):282-92.
  • E.T. Chouchani, et al. Ischaemic accumulation of succinate controls reperfusion injury through mito-chondrial ROS Nature. 2014; 15(7527): 431–435.
  • J.L. Martin, et al. Succinate accumulation drives ischaemia-reperfusion injury during organ transplan-tation Nature Metabolism 2019;1:966–974.
  • Grivennikova VG, Vinogradov AD Mitochondri¬al production of reactive oxygen species Biochemis¬try (Moscow) 2013 78. 13: 1490-1511 DOI: 10.1134/S0006297913130087
  • Grivennikova VG, Vinogradov AD. Generation of reactive oxygen species in mitochondria. Uspekhi Bio-logical Chemistry. 2013;53:245-296. [in Russian]
  • Korshunov SS, Skulachev VP, Starkov AA. High protonic potential actuates a mechanism of produc¬tion of reactive oxygen species in mitochondria. FEBS Lett. 1997;416:15-8.
  • Cadenas S. Mitochondrial uncoupling, ROS gen¬eration and cardioprotection. Biochim Biophys Acta Bioenerg. 2018;1859, 9: 940-950. doi: 10.1016/j.bba¬bio.2018.05.019.
  • Moreno-Sanchez R, et al. Reactive oxygen species are generated by the respiratory complex II – evi-dence for lack of contribution of the reverse electron flow in complex I FEBS Journal. 2013;280:927–38. doi:10.1111/febs.12086.
  • Andrienko TN, et al. The role of succinate and ROS in reperfusion injury - A critical appraisal. J Mol Cell Cardiol. 2017; Sep;110:1-14. doi: 10.1016/j.yjmcc.2017.06.016
  • Dröse S. Differential effects of complex II on mito¬chondrial ROS production and their relation to cardi-oprotective pre- and postconditioning Biochimica et Biophysica Acta 2013;1827:578–87.
  • Endlicher R, et al. Peroxidative damage of mito¬chondrial respiration is substrate-dependent. Physiol Res. 2009;58(5):685-92.
  • Puntel RL, et al. Antioxidant properties of Krebs cycle intermediates against malonate pro-oxidant activity in vitro: a comparative study using the col¬orimetric method and HPLC analysis to determine malondialdehyde in rat brain homogenates. Life Sci. 2007. 13; 81 (1):51-62.
  • Dedeoglu A, et al. Mice overexpressing 70-kDa heat shock protein show increased resistance to malonate and 3-nitropropionic acid. Exp Neurol. 2002;176(1):262-5.
  • Tretter L, et al, Effect of succinate on mitochondri¬al lipid peroxidation. 1. Comparative studies on fer-rous ion and ADP. Fe/NADPH-induced peroxidation. J.Bioenergetics Biomembranes. 1987; 19 (1), 31.
  • Szabados G, Andó A, Tretter L, Horváth I. Effect of succinate on mitochondrial lipid peroxidation. 2. The protective effect of succinate against functional and structural changes induced by lipid peroxidation. J.Bioenergetics Biomembranes. 1987; 19 (1), 21.
  • Gpishina EV, et al. Biophysics. 2015;60(4): 708–15. [in Russian]
  • Wang GL, Yiang B-H, Rue EA, Semenza GL. Hy¬poxia-inducible factor 1 is a basic-helix- loop-helix-PAS heterodimer regulated by cellular O2 tension. PNAS USA. 1995; 92: 5510–5514;
  • He W, et al. Citric acid cycle intermediates as li¬gands for orphan G-proteincoupled receptors. Nature. 2004;429:188–93.
Еще
Статья обзорная