Unbounded order convergence and the Gordon theorem

Автор: Emelyanov Eduard Y., Gorokhova Svetlana G., Kutateladze Semen S.

Журнал: Владикавказский математический журнал @vmj-ru

Статья в выпуске: 4 т.21, 2019 года.

Бесплатный доступ

The celebrated Gordon's theorem is a natural tool for dealing with universal completions of Archimedean vector lattices. Gordon's theorem allows us to clarify some recent results on unbounded order convergence. Applying the Gordon theorem, we demonstrate several facts on order convergence of sequences in Archimedean vector lattices. We present an elementary Boolean-Valued proof of the Gao-Grobler-Troitsky-Xanthos theorem saying that a sequence xn in an Archimedean vector lattice X is uo- (uo-Cauchy) in X if and only if xn is o- (o-convergent) in Xu. We also give elementary proof of the theorem, which is a result of contributions of several authors, saying that an Archimedean vector lattice is sequentially uo-complete if and only if it is σ-universally complete. Furthermore, we provide a comprehensive solution to Azouzi's problem on characterization of an Archimedean vector lattice in which every uo-Cauchy net is o-convergent in its universal completion.

Еще

Unbounded order convergence, universally complete vector lattice, boolean valued analysis

Короткий адрес: https://sciup.org/143168814

IDR: 143168814   |   DOI: 10.23671/VNC.2019.21.44624

Список литературы Unbounded order convergence and the Gordon theorem

  • Aliprantis, C. D. and Burkinshaw, O. Locally Solid Riesz Spaces with Applications to Economics, 2nd ed., Mathematical Surveys and Monographs, vol. 105, Providence, RI, Amer. Math. Soc., 2003.
  • Kusraev, A. G. Dominated Operators, Dordrecht, Kluwer, 2000.
  • Gao, N., Troitsky, V. G. and Xanthos, F. Uo-Convergence and its Applications to Cesaro Means in Banach Lattices, Israel Journal of Mathematics, 2017, vol. 220, no. 2, pp. 649-689. DOI: 10.1007/s11856-017-1530-y
  • Kaplan, S. On Unbounded Order Convergence, Real Anal. Exchange, 1997/98, vol. 23(1), pp. 175-184.
  • Kusraev, A. G. and Kutateladze, S. S. Boolean-valued Analysis, Dordrecht, Kluwer Academic, 1999.
  • Abramovich, Y. A. and Sirotkin, G. G. On Order Convergence of Nets, Positivity, 2005, vol. 9, no. 3, pp. 287-292.
  • DOI: 10.1007/s11117-004-7543-x
  • Dabboorasad, Y. A., Emelyanov, E. Y. and Marabeh, M. A. A. Order Convergence in Infinite-dimensional Vector Lattices is not Topological, Uzbek Math. J., 2019, vol. 3, pp. 4-10.
  • Gorokhova, S. G. Intrinsic Characterization of the Space c0(A) in the Class of Banach Lattices, Math. Notes, 1996, vol. 60, no. 3, pp. 330-333.
  • DOI: 10.1007/bf02320373
  • Nakano, H. Ergodic Theorems in Semi-ordered Linear Spaces, Ann. Math., 1948, vol. 49, no. 2, pp. 538-556.
  • DOI: 10.2307/1969044
  • Wickstead, A. W. Weak and Unbounded Order Convergence in Banach Lattices, J. Austral. Math. Soc. Ser. A, 1977, vol. 24, no. 3, pp. 312-319.
  • DOI: 10.1017/s1446788700020346
  • Deng, Y., O'Brien, M. and Troitsky, V. G. Unbounded Norm Convergence in Banach Lattices, Positivity, 2017, vol. 21, no. 3, pp. 963-974.
  • DOI: 10.1007/s11117-016-0446-9
  • Emelyanov, E. Y. and Marabeh, M. A. A. Two Measure-free Versions of the Brezis-Lieb Lemma, Vladikavkaz Math. J., 2016, vol. 18, no. 1, pp. 21-25.
  • DOI: 10.23671/VNC.2016.1.5930
  • Li, H. and Chen, Z. Some Loose Ends on Unbounded Order Convergence, Positivity, 2018, vol. 22, no. 1, pp. 83-90.
  • DOI: 10.1007/s11117-017-0501-1
  • Emelyanov, E. Y., Erkursun-Ozcan, N. and Gorokhova, S. G. Komlos Properties in Banach Lattices, Acta Math. Hungarica, 2018, vol. 155, no. 2, pp. 324-331.
  • DOI: 10.1007/s10474-018-0852-5
  • Azouzi, Y. Completeness for Vector Lattices, J. Math. Anal. Appl., 2019, vol. 472, no. 1, pp. 216-230.
  • DOI: 10.1016/j.jmaa.2018.11.019
  • Taylor, M. A. Completeness of Unbounded Convergences, Proc. Amer. Math. Soc., 2018, vol. 146, no. 8, pp. 3413-3423.
  • DOI: 10.1090/proc/14007
  • Aydin, A., Emelyanov, E. Y., Erkursun-Ozcan, N. and Marabeh, M. A. A. Unbounded p-Convergence in Lattice-normed Vector Lattices, Siberian Adv. Math., 2019, vol. 29, no. 3, pp. 164-182.
  • DOI: 10.3103/s1055134419030027
  • Taylor, M. A. Master Thesis, Edmonton, University of Alberta, 2019.
  • Gordon, E. I. Real Numbers in Boolean-Valued Models of Set Theory and K-Spaces, Dokl. Akad. Nauk SSSR, 1977, vol. 237, no. 4, pp. 773-775.
  • Kantorovich, L. V. On Semi-Ordered Linear Spaces and their Applications to the Theory of Linear Operations, Dokl. Akad. Nauk SSSR, 1935, vol. 4, no. 1-2, pp. 11-14.
  • Gordon, E. I. K-spaces in Boolean-valued Models of Set Theory, Dokl. Akad. Nauk SSSR, 1981, vol. 258, no. 4, pp. 777-780.
  • Gordon, E. I. Theorems on Preservation of Relations in K-spaces, Sib. Math. J., 1982, vol. 23, no. 3, pp. 336-344.
  • DOI: 10.1007/bf00973490
  • Dales, H. G. and Woodin, W. H. An Introduction to Independence for Analysts, Cambridge, Cambridge University Press, 1987, 241 p.
  • Gordon, E. I., Kusraev, A. G. and Kutateladze, S. S. Infinitesimal Analysis, Dordrecht, Kluwer Academic Publishers, 2002.
  • Gutman, A. E., Kusraev, A. G. and Kutateladze, S. S. The Wickstead Problem, Sib. Elektron. Mat. Izv., 2008, vol. 5, pp. 293-333.
Еще
Статья научная