Understanding Student Attitudes toward GenAI Tools: A Comparative Study of Serbia and Austria

Автор: Slobodan Adžić, Tijana Savić Tot, Vladimir Vuković, Pavle Radanov, Jelena Avakumović

Журнал: International Journal of Cognitive Research in Science, Engineering and Education @ijcrsee

Рубрика: Original research

Статья в выпуске: 3 vol.12, 2024 года.

Бесплатный доступ

This study explores university students’ attitudes toward generative AI technology and tools in two European countries. Driven by the increasing integration of AI in education and the limited research on student perceptions, particularly in European contexts, this study aimed to understand how students view GenAI and its implications for higher education. The study employed a quantitative approach, using surveys to collect data on student attitudes toward AI across different fields of study, genders, and countries. A key innovation of this research is the development of a novel “Attitude toward AI” scale, designed to provide a robust and theoretically grounded instrument for measuring student perceptions of GenAI. The scale offers a valuable tool for evaluating the effectiveness of AI integration in education. The results showed that students’ attitudes toward AI differed significantly based on their field of study and gender. Male students in technical sciences had the most positive attitudes toward AI adoption, indicating their potential to drive positive changes in AI implementation. While the effect size was small, this finding underscores the importance of considering individual factors when designing interventions to promote AI acceptance. The study underscored how prior experience shapes positive attitudes, highlighting the need for resources to familiarize students with GenAI and its ethics. The “Attitude toward AI” scale is a significant contribution addressing the lack of reliable instruments for assessing student perceptions of GenAI, enabling deeper understanding of factors influencing students’ adoption, informing targeted interventions for different student groups. Further research is needed on GenAI’s long-term impact.

Еще

Artificial intelligence, ChatGPT, GenAI tools, student attitudes, attitudes scale

Короткий адрес: https://sciup.org/170206562

IDR: 170206562   |   DOI: 10.23947/2334-8496-2024-12-3-583-611

Список литературы Understanding Student Attitudes toward GenAI Tools: A Comparative Study of Serbia and Austria

  • Abbasi, B. N., Wu, Y., and Luo, Z. (2024). Exploring the impact of artificial intelligence on curriculum development in global higher education institutions. Education and Information Technologies. https://doi.org/10.1007/s10639-024-13113-z DOI: https://doi.org/10.1007/s10639-024-13113-z
  • Abdaljaleel, M., Barakat, M., Alsanafi, M., Salim, N. A., Abazid, H., Malaeb, D., Mohammed, A. H., Hassan, B. A. R., Wayyes, A. M., Farhan, S. S., Khatib, S. E., Rahal, M., Sahban, A., Abdelaziz, D. H., Mansour, N. O., AlZayer, R., Khalil, R., Fekih-Romdhane, F., Hallit, R., … Sallam, M. (2024). A multinational study on the factors influencing university students’ attitudes and usage of ChatGPT. Scientific Reports, 14(1), Article 1. https://doi.org/10.1038/s41598-024-52549-8 DOI: https://doi.org/10.1038/s41598-024-52549-8
  • Alghamdi, A. M., Alsuhaymi, D. S., Alghamdi, F. A., Farhan, A. M., Shehata, S. M., and Sakoury, M. M. (2022). University students’ behavioral intention and gender differences toward the acceptance of shifting regular field training courses to e-training courses. Education and Information Technologies, 27(1), 451–468. https://doi.org/10.1007/s10639-021-10701-1 DOI: https://doi.org/10.1007/s10639-021-10701-1
  • Almaraz-López, C., Almaraz-Menéndez, F., and López-Esteban, C. (2023). Comparative Study of the Attitudes and Perceptions of University Students in Business Administration and Management and in Education toward Artificial Intelligence. Education Sciences, 13(6), 609. https://doi.org/10.3390/educsci13060609 DOI: https://doi.org/10.3390/educsci13060609
  • Almassaad, A., Alajlan, H., and Alebaikan, R. (2024). Student Perceptions of Generative Artificial Intelligence: Investigating Utilization, Benefits, and Challenges in Higher Education. Systems, 12(10), Article 10. https://doi.org/10.3390/systems12100385 DOI: https://doi.org/10.3390/systems12100385
  • Al-Momani, A. M., and Ramayah, T. (2024). Adoption of Artificial Intelligence in Education: A Systematic Literature Review. In M. A. Al-Sharafi, M. Al-Emran, G. W.-H. Tan, and K.-B. Ooi (Eds.), Current and Future Trends on Intelligent Technology Adoption (Vol. 1161, pp. 117–135). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-61463-7_7 DOI: https://doi.org/10.1007/978-3-031-61463-7_7
  • Al-Zahrani, A. M. (2024). The impact of generative AI tools on researchers and research: Implications for academia in higher education. Innovations in Education and Teaching International, 61(5), 1029–1043. https://doi.org/10.1080/14703297.2023.2271445 DOI: https://doi.org/10.1080/14703297.2023.2271445
  • Al-Zahrani, A. M., and Alasmari, T. M. (2024). Exploring the impact of artificial intelligence on higher education: The dynamics of ethical, social, and educational implications. Humanities and Social Sciences Communications, 11(1), 912. https://doi.org/10.1057/s41599-024-03432-4 DOI: https://doi.org/10.1057/s41599-024-03432-4
  • Alzahrani, L. (2023). Analyzing Students’ Attitudes and Behavior Toward Artificial Intelligence Technologies in Higher Education. 11(6). https://doi.org/10.35940/ijrte.F7475.0311623 DOI: https://doi.org/10.35940/ijrte.F7475.0311623
  • Amann, W., and Stachowicz-Stanusch, A. (2020). Should we be Afraid of Artificial Intelligence? In Artificial Intelligence and its Impact on Business (pp. 3–14). IAP.
  • Aravantinos, S., Lavidas, K., Voulgari, I., Papadakis, S., Karalis, T., and Komis, V. (2024). Educational Approaches with AΙ in Primary School Settings: A Systematic Review of the Literature Available in Scopus. Education Sciences, 14(7), Article 7. https://doi.org/10.3390/educsci14070744 DOI: https://doi.org/10.3390/educsci14070744
  • Atlas, S. (2023). ChatGPT for higher education and professional development: A guide to conversational AI. 2023. https://digitalcommons.uri.edu/cba_facpubs/548 (Дата Обращения: 11.05. 2023).
  • Baek, T. H., and Yoon, S. (2017). Guilt and Shame: Environmental Message Framing Effects. Journal of Advertising, 46(3), Article 3. https://doi.org/10.1080/00913367.2017.1321069 DOI: https://doi.org/10.1080/00913367.2017.1321069
  • Bahroun, Z., Anane, C., Ahmed, V., and Zacca, A. (2023). Transforming education: A comprehensive review of generative artificial intelligence in educational settings through bibliometric and content analysis. Sustainability, 15(17), 12983. https://www.mdpi.com/2071-1050/15/17/12983 DOI: https://doi.org/10.3390/su151712983
  • Baidoo-Anu, D., and Ansah, L. O. (2023). Education in the Era of Generative Artificial Intelligence (AI): Understanding the Potential Benefits of ChatGPT in Promoting Teaching and Learning. Journal of AI, 7(1), Article 1. https://doi.org/10.61969/jai.1337500 DOI: https://doi.org/10.61969/jai.1337500
  • Bannister, P., Peñalver, E. A., and Urbieta, A. S. (2024). International Students and Generative Artificial Intelligence: A Cross-Cultural Exploration of HE Academic Integrity Policy. Journal of International Students, 14(3), 149–170. https://ojed.org/index.php/jis/article/view/6277 DOI: https://doi.org/10.32674/jis.v14i3.6277
  • Bannister, P., Urbieta, A. S., and Peñalver, E. A. (2023). A Systematic Review of Generative AI and (English Medium Instruction) Higher Education. Aula Abierta, 52(4), Article 4. https://doi.org/10.17811/rifie.52.4.2023.401-409 DOI: https://doi.org/10.17811/rifie.52.4.2023.401-409
  • Berg, C. (2023). The case for generative AI in scholarly practice. Available at SSRN 4407587. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4407587 DOI: https://doi.org/10.2139/ssrn.4407587
  • Boateng, A. A., Essel, H. B., Vlachopoulos, D., Johnson, E. E., and Okpattah, V. (2022). Flipping the classroom in senior high school textile education to enhance students’ learning achievement and self-efficacy. Education Sciences, 12(2), 131. https://www.mdpi.com/2227-7102/12/2/131 DOI: https://doi.org/10.3390/educsci12020131
  • Bosch, T., Jordaan, M., Mwaura, J., Nkoala, S., Schoon, A., Smit, A., Uzuegbunam, C. E., and Mare, A. (2023). South African University Students’ Use of AI-Powered Tools for Engaged Learning (SSRN Scholarly Paper 4595655). https://doi.org/10.2139/ssrn.4595655 DOI: https://doi.org/10.2139/ssrn.4595655
  • Bright, J., Enock, F. E., Esnaashari, S., Francis, J., Hashem, Y., and Morgan, D. (2024). Generative AI is already widespread in the public sector (arXiv:2401.01291). arXiv. https://doi.org/10.48550/arXiv.2401.01291
  • Bruner II, G. C. (2019). Marketing Scales Handbook: Multi-Item Measures for Consumer Insight Research, Volume 10: Vol. (Library version) (Issue Volume 10). GCBII Productions, LLC. https://scaleresearch.siu.edu/V10sample.pdf
  • Bulut, O., Beiting-Parrish, M., Casabianca, J., Slater, S., Jiao, H., Song, D., Ormerod, C., Fabiyi, D., Ivan, R., Walsh, C., Rios, O., Wilson, J., Yildirim-Erbasli, S., Wongvorachan, T., Liu, J. X., Tan, B., and Morilova, P. (2024). The Rise of Artificial Intelligence in Educational Measurement: Opportunities and Ethical Challenges. https://doi.org/10.48550/arXiv.2406.18900 DOI: https://doi.org/10.59863/MIQL7785
  • Burkhard, M. (2022). Student Perceptions of AI-Powered Writing Tools: Towards Individualized Teaching Strategies. International Association for Development of the Information Society. https://eric.ed.gov/?id=ED626893
  • Chan, C. K. Y., and Hu, W. (2023). Students’ Voices on Generative AI: Perceptions, Benefits, and Challenges in Higher Education (arXiv:2305.00290). arXiv. https://doi.org/10.48550/arXiv.2305.00290
  • Chan, C. K. Y., and Zhou, W. (2023a). An expectancy value theory (EVT) based instrument for measuring student perceptions of generative AI. Smart Learning Environments, 10(1), 64. https://doi.org/10.1186/s40561-023-00284-4
  • Chan, C. K. Y., and Zhou, W. (2023b). An expectancy value theory (EVT) based instrument for measuring student perceptions of generative AI. Smart Learning Environments, 10(1), 64. https://doi.org/10.1186/s40561-023-00284-4 DOI: https://doi.org/10.1186/s40561-023-00284-4
  • Chan, C. K. Y., and Zhou, W. (2023c). Deconstructing Student Perceptions of Generative AI (GenAI) through an Expectancy Value Theory (EVT)-based Instrument (arXiv:2305.01186). arXiv. https://doi.org/10.48550/arXiv.2305.01186
  • Chigwada, J., and Pasipamire, N. (2024). Perception and Use of Large Language Models by Library and Information Science Students. International Journal of Librarianship, 9(3), Article 3. https://doi.org/10.23974/ijol.2024.vol9.3.385 DOI: https://doi.org/10.23974/ijol.2024.vol9.3.385
  • Chiu, T. K. F. (2024). Future research recommendations for transforming higher education with generative AI. Computers and Education: Artificial Intelligence, 6, 100197. https://doi.org/10.1016/j.caeai.2023.100197 DOI: https://doi.org/10.1016/j.caeai.2023.100197
  • Cisco. (2020). Cisco Annual Internet Report—Cisco Annual Internet Report (2018–2023) White Paper. Cisco. https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
  • Crompton, H., and Burke, D. (2023). Artificial intelligence in higher education: The state of the field. International Journal of Educational Technology in Higher Education, 20(1), 22. https://doi.org/10.1186/s41239-023-00392-8 DOI: https://doi.org/10.1186/s41239-023-00392-8
  • Cui, P., and Alias, B. (2024). Opportunities and challenges in higher education arising from AI: A systematic literature review (2020–2024). Journal of Infrastructure, Policy and Development, 8, 8390. https://doi.org/10.24294/jipd.v8i11.8390 DOI: https://doi.org/10.24294/jipd.v8i11.8390
  • Daher, W., and Hussein, A. (2024). Higher Education Students’ Perceptions of GenAI Tools for Learning. Information, 15(7), Article 7. https://doi.org/10.3390/info15070416 DOI: https://doi.org/10.3390/info15070416
  • Dotan, R., Parker, L. S., and Radzilowicz, J. (2024). Responsible Adoption of Generative AI in Higher Education: Developing a “Points to Consider” Approach Based on Faculty Perspectives. Proceedings of the 2024 ACM Conference on Fairness, Accountability, and Transparency, 2033–2046. https://doi.org/10.1145/3630106.3659023 DOI: https://doi.org/10.1145/3630106.3659023
  • Duarte, F. (2024). Number of ChatGPT Users (Feb 2024). Exploding Topics. https://explodingtopics.com/blog/chatgpt-users
  • Dwivedi, Y. K., Kshetri, N., Hughes, L., Slade, E. L., Jeyaraj, A., Kar, A. K., Baabdullah, A. M., Koohang, A., Raghavan, V., and Ahuja, M. (2023). “So what if ChatGPT wrote it?” Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research, practice and policy. International Journal of Information Management, 71, 102642. https://doi.org/10.1016/j.ijinfomgt.2023.102642 DOI: https://doi.org/10.1016/j.ijinfomgt.2023.102642
  • Elkhodr, M., Gide, E., Wu, R., and Darwish, O. (2023). ICT students’ perceptions towards ChatGPT: An experimental reflective lab analysis. STEM Education, 3, 70. https://doi.org/10.3934/steme.2023006 DOI: https://doi.org/10.3934/steme.2023006
  • Ezzaim, A., Dahbi, A., Aqqal, A., and Haidine, A. (2024). AI-based learning style detection in adaptive learning systems: A systematic literature review. Journal of Computers in Education. https://doi.org/10.1007/s40692-024-00328-9 DOI: https://doi.org/10.1007/s40692-024-00328-9
  • Fan, N. (2023). Exploring the Effects of Automated Written Corrective Feedback on EFL Students’ Writing Quality: A Mixed-Methods Study. SAGE Open, 13(2), 21582440231181296. https://doi.org/10.1177/21582440231181296 DOI: https://doi.org/10.1177/21582440231181296
  • Ferrell, O. C., Harrison, D. E., Ferrell, L. K., Ajjan, H., and Hochstein, B. W. (2024). A theoretical framework to guide AI ethical decision making. AMS Review, 14(1), 53–67. https://doi.org/10.1007/s13162-024-00275-9 DOI: https://doi.org/10.1007/s13162-024-00275-9
  • Fischer, M., Völckner, F., and Sattler, H. (2010). How Important Are Brands? A Cross-Category, Cross-Country Study. Journal of Marketing Research, 47(5), Article 5. https://journals.sagepub.com/doi/abs/10.1509/jmkr.47.5.823 DOI: https://doi.org/10.1509/jmkr.47.5.823
  • Floridi, L., Cowls, J., Beltrametti, M., Chatila, R., Chazerand, P., Dignum, V., Luetge, C., Madelin, R., Pagallo, U., Rossi, F., Schafer, B., Valcke, P., and Vayena, E. (2021). An Ethical Framework for a Good AI Society: Opportunities, Risks, Principles, and Recommendations. In L. Floridi (Ed.), Ethics, Governance, and Policies in Artificial Intelligence (pp. 19–39). Springer International Publishing. https://doi.org/10.1007/978-3-030-81907-1_3 DOI: https://doi.org/10.1007/978-3-030-81907-1_3
  • Gayed, J. M., Carlon, M. K. J., Oriola, A. M., and Cross, J. S. (2022). Exploring an AI-based writing Assistant’s impact on English language learners. Computers and Education: Artificial Intelligence, 3, 100055. https://doi.org/10.1016/j.caeai.2022.100055 DOI: https://doi.org/10.1016/j.caeai.2022.100055
  • Genkova, P., Herbst, J., Schreiber, H., Rašticová, M., Poor, J., Veresné, K. V., Suhajda, C., Viszetenvelt, A., and Bjekic, J. (2022). A comparative study on culture-specific and cross-cultural aspects of intercultural relations in Hungary, Serbia, Czech Republic, and Germany. Frontiers in Psychology, 13. https://doi.org/10.3389/fpsyg.2022.886100 DOI: https://doi.org/10.3389/fpsyg.2022.886100
  • Gesser-Edelsburg, A., Hijazi, R., Eliyahu, E., and Tal, A. (2024). Bridging the Divide: An Empirical Investigation of Artificial Intelligence and Generative Artificial Intelligence Integration Across Genders, Disciplines and Academic Roles. European Journal of Open, Distance and E-Learning, 26(s1), 51–69. https://doi.org/10.2478/eurodl-2024-0008 DOI: https://doi.org/10.2478/eurodl-2024-0008
  • Gombert, S., Fink, A., Giorgashvili, T., Jivet, I., Di Mitri, D., Yau, J., Frey, A., and Drachsler, H. (2024). From the Automated Assessment of Student Essay Content to Highly Informative Feedback: A Case Study. International Journal of Artificial Intelligence in Education. https://doi.org/10.1007/s40593-023-00387-6 DOI: https://doi.org/10.1007/s40593-023-00387-6
  • Habibi, A., Muhaimin, M., Danibao, B. K., Wibowo, Y. G., Wahyuni, S., and Octavia, A. (2023). ChatGPT in higher education learning: Acceptance and use. Computers and Education: Artificial Intelligence, 5, 100190. https://doi.org/10.1016/j.caeai.2023.100190 DOI: https://doi.org/10.1016/j.caeai.2023.100190
  • Huh, J., Kim, H.-Y., and Lee, G. (2023). “Oh, happy day!” Examining the role of AI-powered voice assistants as a positive technology in the formation of brand loyalty. Journal of Research in Interactive Marketing, 17(5), Article 5. https://doi.org/10.1108/JRIM-10-2022-0328 DOI: https://doi.org/10.1108/JRIM-10-2022-0328
  • Imran, M., and Almusharraf, N. (2024). Google Gemini as a next generation AI educational tool: A review of emerging educational technology. Smart Learning Environments, 11(1), 22. https://doi.org/10.1186/s40561-024-00310-z DOI: https://doi.org/10.1186/s40561-024-00310-z
  • Kadaruddin, K. (2023). Empowering education through generative AI: Innovative instructional strategies for tomorrow’s learners. International Journal of Business, Law, and Education, 4(2), 618–625. https://doi.org/10.56442/ijble.v4i2.215 DOI: https://doi.org/10.56442/ijble.v4i2.215
  • Kasneci, E., Sessler, K., Küchemann, S., Bannert, M., Dementieva, D., Fischer, F., Gasser, U., Groh, G., Günnemann, S., Hüllermeier, E., Krusche, S., Kutyniok, G., Michaeli, T., Nerdel, C., Pfeffer, J., Poquet, O., Sailer, M., Schmidt, A., Seidel, T., … Kasneci, G. (2023). ChatGPT for good? On opportunities and challenges of large language models for education. Learning and Individual Differences, 103, 102274. https://doi.org/10.1016/j.lindif.2023.102274 DOI: https://doi.org/10.1016/j.lindif.2023.102274
  • Kelly, A., Sullivan, M., and Strampel, K. (2023a). Generative artificial intelligence: University student awareness, experience, and confidence in use across disciplines. Journal of University Teaching and Learning Practice, 20(6), 1. https://doi.org/10.53761/1.20.6.12
  • Kelly, A., Sullivan, M., and Strampel, K. (2023b). Generative artificial intelligence: University student awareness, experience, and confidence in use across disciplines. Journal of University Teaching and Learning Practice, 20(6). https://doi.org/10.53761/1.20.6.12 DOI: https://doi.org/10.53761/1.20.6.12
  • Khakurel, J., Penzenstadler, B., Porras, J., Knutas, A., and Zhang, W. (2018). The Rise of Artificial Intelligence under the Lens of Sustainability. Technologies, 6(4), Article 4. https://doi.org/10.3390/technologies6040100 DOI: https://doi.org/10.3390/technologies6040100
  • Kim, J., Yu, S., Detrick, R., and Li, N. (2024). Exploring students’ perspectives on Generative AI-assisted academic writing. Education and Information Technologies. https://doi.org/10.1007/s10639-024-12878-7 DOI: https://doi.org/10.1007/s10639-024-12878-7
  • Kitamura, F. C. (2023). ChatGPT Is Shaping the Future of Medical Writing But Still Requires Human Judgment. Radiology, 307(2), e230171. https://doi.org/10.1148/radiol.230171 DOI: https://doi.org/10.1148/radiol.230171
  • Kong, S. C., Yang, Y., and Hou, C. (2024). Examining teachers’ behavioural intention of using generative artificial intelligence tools for teaching and learning based on the extended technology acceptance model. Computers and Education: Artificial Intelligence, 7, 100328. https://doi.org/10.1016/j.caeai.2024.100328 DOI: https://doi.org/10.1016/j.caeai.2024.100328
  • Lavidas, K., Voulgari, I., Papadakis, S., Athanassopoulos, S., Anastasiou, A., Filippidi, A., Komis, V., and Karacapilidis, N. (2024). Determinants of Humanities and Social Sciences Students’ Intentions to Use Artificial Intelligence Applications for Academic Purposes. Information, 15(6), Article 6. https://doi.org/10.3390/info15060314 DOI: https://doi.org/10.3390/info15060314
  • Lee, Y.-F., Hwang, G.-J., and Chen, P.-Y. (2022). Impacts of an AI-based chabot on college students’ after-class review, academic performance, self-efficacy, learning attitude, and motivation. Educational Technology Research and Development, 70(5), 1843–1865. https://doi.org/10.1007/s11423-022-10142-8 DOI: https://doi.org/10.1007/s11423-022-10142-8
  • Liu, Y., Park, J., and McMinn, S. (2024). Using generative artificial intelligence/ChatGPT for academic communication: Students’ perspectives. International Journal of Applied Linguistics, 34(4), 1437–1461. https://doi.org/10.1111/ijal.12574 DOI: https://doi.org/10.1111/ijal.12574
  • Luo (Jess), J. (2024). A critical review of GenAI policies in higher education assessment: A call to reconsider the “originality” of students’ work. Assessment and Evaluation in Higher Education, 1–14. https://doi.org/10.1080/02602938.2024.2309963 DOI: https://doi.org/10.1080/02602938.2024.2309963
  • Makri, K., and Schlegelmilch, B. (2017). Time Orientation and Engagement With Social Networking Sites: A Cross-Cultural Study in Austria, China and Uruguay. Journal of Business Research, 80. https://doi.org/10.1016/j.jbusres.2017.05.016 DOI: https://doi.org/10.1016/j.jbusres.2017.05.016
  • Makridakis, S. (2017). The forthcoming Artificial Intelligence (AI) revolution: Its impact on society and firms. Futures, 90, 46–60. https://doi.org/10.1016/j.futures.2017.03.006 DOI: https://doi.org/10.1016/j.futures.2017.03.006
  • McDonald, N., Johri, A., Ali, A., and Hingle, A. (2024). Generative Artificial Intelligence in Higher Education: Evidence from an Analysis of Institutional Policies and Guidelines (arXiv:2402.01659). arXiv. https://doi.org/10.48550/arXiv.2402.01659
  • Miao, F., and Holmes, W. (2023). Guidance for generative AI in education and research. https://discovery.ucl.ac.uk/id/eprint/10176438/
  • Michel-Villarreal, R., Vilalta-Perdomo, E., Salinas-Navarro, D. E., Thierry-Aguilera, R., and Gerardou, F. S. (2023). Challenges and Opportunities of Generative AI for Higher Education as Explained by ChatGPT. Education Sciences, 13(9), Article 9. https://doi.org/10.3390/educsci13090856 DOI: https://doi.org/10.3390/educsci13090856
  • Mizumoto, A., and Eguchi, M. (2023). Exploring the potential of using an AI language model for automated essay scoring. Research Methods in Applied Linguistics, 2(2), 100050. https://doi.org/10.1016/j.rmal.2023.100050 DOI: https://doi.org/10.1016/j.rmal.2023.100050
  • Moorhouse, B. L., Yeo, M. A., and Wan, Y. (2023). Generative AI tools and assessment: Guidelines of the world’s top-ranking universities. Computers and Education Open, 5, 100151. https://doi.org/10.1016/j.caeo.2023.100151 DOI: https://doi.org/10.1016/j.caeo.2023.100151
  • Murdan, A. P., and Halkhoree, R. (2024). Integration of Artificial Intelligence for educational excellence and innovation in higher education institutions. 2024 1st International Conference on Smart Energy Systems and Artificial Intelligence (SESAI), 1–6. https://doi.org/10.1109/SESAI61023.2024.10599402 DOI: https://doi.org/10.1109/SESAI61023.2024.10599402
  • Naseer, F., Khalid, M. U., Ayub, N., Rasool, A., Abbas, T., and Afzal, M. W. (2024). Automated Assessment and Feedback in Higher Education Using Generative AI. In Transforming Education With Generative AI: Prompt Engineering and Synthetic Content Creation (pp. 433–461). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-1351-0.ch021 DOI: https://doi.org/10.4018/979-8-3693-1351-0.ch021
  • Ngo, T. T. A. (2023, September 1). The Perception by University Students of the Use of ChatGPT in Education. | International Journal of Emerging Technologies in Learning | EBSCOhost. https://doi.org/10.3991/ijet.v18i17.39019 DOI: https://doi.org/10.3991/ijet.v18i17.39019
  • OACD. (2024). AI Strategies and Policies in Serbia—OECD.AI. https://oecd.ai/en/dashboards/countries/Serbia
  • OECD. (2024a). AI Strategies and Policies in Austria—OECD.AI. https://oecd.ai/en/dashboards/countries/Austria
  • OECD. (2024b). Western Balkans Competitiveness Outlook 2024: Serbia. OECD. https://doi.org/10.1787/3699c0d5-en DOI: https://doi.org/10.1787/3699c0d5-en
  • Ogunleye, B., Zakariyyah, K. I., Ajao, O., Olayinka, O., and Sharma, H. (2024). A Systematic Review of Generative AI for Teaching and Learning Practice. Education Sciences, 14(6), 636. https://www.mdpi.com/2227-7102/14/6/636 DOI: https://doi.org/10.3390/educsci14060636
  • O’Neill, A. (2024a). Austria—Gross domestic product (GDP) growth rate 2028. Statista. https://www.statista.com/statistics/375293/gross-domestic-product-gdp-growth-rate-in-austria/
  • O’Neill, A. (2024b). Serbia—Gross domestic product (GDP) 2028. Statista. https://www.statista.com/statistics/440517/gross-domestic-product-gdp-in-serbia/
  • Opiyo, B. (2024, May 20). 8 Machine Learning Jobs That Are In-Demand in 2024. Dataquest. https://www.dataquest.io/blog/machine-learning-jobs-in-demand/
  • Parissi, M., Komis, V., Dumouchel, G., Lavidas, K., and Papadakis, S. (2023). How Does Students’ Knowledge About Information-Seeking Improve Their Behavior in Solving Information Problems? Educational Process International Journal, 12, 113–137. https://doi.org/10.22521/edupij.2023.121.7 DOI: https://doi.org/10.22521/edupij.2023.121.7
  • Park, J., Teo, T. W., Teo, A., Chang, J., Huang, J. S., and Koo, S. (2023). Integrating artificial intelligence into science lessons: Teachers’ experiences and views. International Journal of STEM Education, 10(1), 61. https://doi.org/10.1186/s40594-023-00454-3 DOI: https://doi.org/10.1186/s40594-023-00454-3
  • Parra-Díaz, J. A., Muñoz-Vidal, F. A., Alves, R. F., and Rodriguez-Garcia, N. M. (2024). Learning Approaches of First-Year University Students: A mixed-method study in Chile. International Journal of Learning, Teaching and Educational Research, 23(10), Article 10. https://doi.org/10.26803/ijlter.23.10.24 DOI: https://doi.org/10.26803/ijlter.23.10.24
  • Pellas, N. (2023). The influence of sociodemographic factors on students’ attitudes toward AI-generated video content creation. Smart Learning Environments, 10(1), 57. https://doi.org/10.1186/s40561-023-00276-4 DOI: https://doi.org/10.1186/s40561-023-00276-4
  • Perera, P., and Lankathilake, M. (2023). Preparing to Revolutionize Education with the Multi-Model GenAI Tool Google Gemini? A Journey towards Effective Policy Making. Journal of Advances in Education and Philosophy, 7(08), 246–253. https://doi.org/10.36348/jaep.2023.v07i08.001 DOI: https://doi.org/10.36348/jaep.2023.v07i08.001
  • Peres, R., Schreier, M., Schweidel, D., and Sorescu, A. (2023). On ChatGPT and beyond: How generative artificial intelligence may affect research, teaching, and practice. International Journal of Research in Marketing, 40(2), 269–275. https://doi.org/10.1016/j.ijresmar.2023.03.001 DOI: https://doi.org/10.1016/j.ijresmar.2023.03.001
  • Pradana, M., Elisa, H. P., and Syarifuddin, S. (2023). Discussing ChatGPT in education: A literature review and bibliometric analysis. Cogent Education, 10(2), 2243134. https://doi.org/10.1080/2331186X.2023.2243134 DOI: https://doi.org/10.1080/2331186X.2023.2243134
  • Prentice, F. M., and Kinden, C. E. (2018). Paraphrasing tools, language translation tools and plagiarism: An exploratory study. International Journal for Educational Integrity, 14(1), 11. https://doi.org/10.1007/s40979-018-0036-7 DOI: https://doi.org/10.1007/s40979-018-0036-7
  • Raman, R., Mandal, S., Das, P., Kaur, T., Sanjanasri, J. P., and Nedungadi, P. (2023). University students as early adopters of ChatGPT: Innovation Diffusion Study. https://doi.org/10.21203/rs.3.rs-2734142/v1 DOI: https://doi.org/10.21203/rs.3.rs-2734142/v1
  • Rejeki, S. (2023). Students’ Perceived Knowledge of Using Grammarly Application in Academic Writing [masterThesis, Jakarta : Fitk Uin Syarif Hidayatullah Jakarta]. https://repository.uinjkt.ac.id/dspace/handle/123456789/73691
  • Roe, J., Perkins, M., and Ruelle, D. (2024). Understanding Student and Academic Staff Perceptions of AI Use in Assessment and Feedback (arXiv:2406.15808). arXiv. https://doi.org/10.48550/arXiv.2406.15808
  • Samala, A. D., Rawas, S., Wang, T., Reed, J. M., Kim, J., Howard, N.-J., and Ertz, M. (2024). Unveiling the landscape of generative artificial intelligence in education: A comprehensive taxonomy of applications, challenges, and future prospects. Education and Information Technologies. https://doi.org/10.1007/s10639-024-12936-0 DOI: https://doi.org/10.1007/s10639-024-12936-0
  • Selim, A. S. M. (2024). The transformative impact of AI-powered tools on academic writing: Perspectives of EFL university students. International Journal of English Linguistics, 14(1), 14. https://scholar.archive.org/work/ykyvdkzecvcadgfsmxtcktea5q/access/wayback/https://ccsenet.org/journal/index.php/ijel/article/download/0/0/49730/53746 DOI: https://doi.org/10.5539/ijel.v14n1p14
  • Shadiev, R., and Feng, Y. (2024). Using automated corrective feedback tools in language learning: A review study. Interactive Learning Environments, 32(6), 2538–2566. https://doi.org/10.1080/10494820.2022.2153145 DOI: https://doi.org/10.1080/10494820.2022.2153145
  • Shailendra, S., Kadel, R., and Sharma, A. (2024). Framework for Adoption of Generative Artificial Intelligence (GenAI) in Education. IEEE Transactions on Education, 67(5), 777–785. https://doi.org/10.1109/TE.2024.3432101 DOI: https://doi.org/10.1109/TE.2024.3432101
  • Smith, E. E., and Storrs, H. (2023). Digital literacies, social media, and undergraduate learning: What do students think they need to know? International Journal of Educational Technology in Higher Education, 20(1), 29. https://doi.org/10.1186/s41239-023-00398-2 DOI: https://doi.org/10.1186/s41239-023-00398-2
  • Statista. (2024). Top 20 Eastern European AI-ready countries 2022. Statista. https://www.statista.com/statistics/1231719/eastern-europe-government-artificial-intelligence-readiness-index/
  • Stojanović, D., and Domazet, I. (2020). Use of Information Technologies in Educational Purposes – Case from Serbia. Economic Analysis, 53(2), 68–78. https://doi.org/10.28934/ea.20.53.2.pp68-78 DOI: https://doi.org/10.28934/ea.20.53.2.pp68-78
  • Strzelecki, A. (2023). Students’ Acceptance of ChatGPT in Higher Education: An Extended Unified Theory of Acceptance and Use of Technology. Innovative Higher Education. https://doi.org/10.1007/s10755-023-09686-1 DOI: https://doi.org/10.1007/s10755-023-09686-1
  • Strzelecki, A., and ElArabawy, S. (2024). Investigation of the moderation effect of gender and study level on the acceptance and use of generative AI by higher education students: Comparative evidence from Poland and Egypt. British Journal of Educational Technology, bjet.13425. https://doi.org/10.1111/bjet.13425 DOI: https://doi.org/10.1111/bjet.13425
  • Sun, J. C., and Pratt, T. L. (2024). Navigating AI Integration in Career and Technical Education: Diffusion Challenges, Opportunities, and Decisions. Education Sciences, 14(12), 1285. https://www.mdpi.com/2227-7102/14/12/1285 DOI: https://doi.org/10.3390/educsci14121285
  • Turchin, A. (2019). Assessing the future plausibility of catastrophically dangerous AI. Futures, 107, 45–58. https://doi.org/10.1016/j.futures.2018.11.007 DOI: https://doi.org/10.1016/j.futures.2018.11.007
  • Van Dis, E. A., Bollen, J., Zuidema, W., van Rooij, R., and Bockting, C. L. (2023). ChatGPT: Five priorities for research. Nature, 614(7947), 224–226. https://www.nature.com/articles/d41586-023-00288-7 DOI: https://doi.org/10.1038/d41586-023-00288-7
  • von Garrel, J., and Mayer, J. (2023). Artificial Intelligence in studies—Use of ChatGPT and AI-based tools among students in Germany. Humanities and Social Sciences Communications, 10(1), Article 1. https://doi.org/10.1057/s41599-023-02304-7 DOI: https://doi.org/10.1057/s41599-023-02304-7
  • Wale, B. D., and Kassahun, Y. F. (2024). The Transformative Power of AI Writing Technologies: Enhancing EFL Writing Instruction through the Integrative Use of Writerly and Google Docs. Human Behavior and Emerging Technologies, 2024, 1–15. https://doi.org/10.1155/2024/9221377 DOI: https://doi.org/10.1155/2024/9221377
  • Watters, C., and Lemanski, M. K. (2023). Universal skepticism of ChatGPT: A review of early literature on chat generative pre-trained transformer. Frontiers in Big Data, 6, 1224976. https://doi.org/10.3389/fdata.2023.1224976 DOI: https://doi.org/10.3389/fdata.2023.1224976
  • Wendehorst, C. (2020). Strict Liability for AI and other Emerging Technologies. Journal of European Tort Law, 11(2), Article 2. https://doi.org/10.1515/jetl-2020-0140 DOI: https://doi.org/10.1515/jetl-2020-0140
  • Woodford, A. (2023). Large Generative AI Models vs Smaller Parameter Models with More Data: A Comprehensive Literature Review. Available at SSRN. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4453658 DOI: https://doi.org/10.2139/ssrn.4453658
  • Wu, C., Zhang, H., and Carroll, J. M. (2024). AI Governance in Higher Education: Case Studies of Guidance at Big Ten Universities. Future Internet, 16(10), 354. https://www.mdpi.com/1999-5903/16/10/354 DOI: https://doi.org/10.3390/fi16100354
  • Xia, Q., Chiu, T. K. F., and Chai, C. S. (2023). The moderating effects of gender and need satisfaction on self-regulated learning through Artificial Intelligence (AI). Education and Information Technologies, 28(7), 8691–8713. https://doi.org/10.1007/s10639-022-11547-x DOI: https://doi.org/10.1007/s10639-022-11547-x
  • Xie, Y., and Keh, H. T. (2016). Taming the Blame Game: Using Promotion Programs to Counter Product-Harm Crises. Journal of Advertising, 45(2), Article 2. https://www.tandfonline.com/doi/abs/10.1080/00913367.2015.1134362 DOI: https://doi.org/10.1080/00913367.2015.1134362
  • Xu, C., Xu, H., Sun, Y., and Xiong, W. (2024). The Digital Siren’s Call: Accepting Unethical AI Advice. International Journal of Human–Computer Interaction, 0(0), 1–17. https://doi.org/10.1080/10447318.2024.2400396 DOI: https://doi.org/10.1080/10447318.2024.2400396
  • Yan, Z., Lee, J. C.-K., Hui, S. K. F., and Lao, H. (2022). Enhancing students’ self-efficacy in creativity and learning performance in the context of English learning: The use of self-assessment mind maps. Frontiers in Psychology, 13, 871781. https://www.frontiersin.org/articles/10.3389/fpsyg.2022.871781/full DOI: https://doi.org/10.3389/fpsyg.2022.871781
  • Yuk Chan, C. K. (2023). A Comprehensive AI Policy Education Framework for University Teaching and Learning. In arXiv e-prints. https://doi.org/10.48550/arXiv.2305.00280 DOI: https://doi.org/10.1186/s41239-023-00408-3
  • Yusuf, A., Pervin, N., and Román-González, M. (2024). Generative AI and the future of higher education: A threat to academic integrity or reformation? Evidence from multicultural perspectives. International Journal of Educational Technology in Higher Education, 21(1), 21. https://doi.org/10.1186/s41239-024-00453-6 DOI: https://doi.org/10.1186/s41239-024-00453-6
  • Zhang, J., and Goyal, S. B. (2024). AI-Driven Decision Support System Innovations to Empower Higher Education Administration. Journal of Computers, Mechanical and Management, 3(2), Article 2. https://doi.org/10.57159/gadl.jcmm.3.2.24070 DOI: https://doi.org/10.57159/gadl.jcmm.3.2.24070
  • Zhao, L., Rahman, M. H., Yeoh, W., Wang, S., and Ooi, K.-B. (2024). Examining factors influencing university students’ adoption of generative artificial intelligence: A cross-country study. Studies in Higher Education. https://www.tandfonline.com/doi/abs/10.1080/03075079.2024.2427786 DOI: https://doi.org/10.1080/03075079.2024.2427786
  • Zhou, K. Z., and Sanfilippo, M. R. (2023). Public Perceptions of Gender Bias in Large Language Models: Cases of ChatGPT and Ernie (arXiv:2309.09120). arXiv. https://doi.org/10.48550/arXiv.2309.09120
Еще
Статья научная