Valorization and characterization of the physicomechanical properties of textile waste for polymer composites

Бесплатный доступ

The environmental crisis of textile waste in the globe has increased due to the growth of fashion show, industrialization, and demand increment. Despite the Huge amount of textile waste its utilization has not been performed yet except for a little investigation. The present work emphasized the mechanical and permeability character of polymer synthesis of TGGA composites(textile waste, gelatin, glycerol, and acetic acid), fixed at 15% w/w of gelatin, 7 ml glycerol, 6 ml acetic acid through the 2.5% w/w, 5% w/w, and 7%w/w of the amount of cellulose waste. Thereby, the tensile strength of TGGA2 composite showed higher than TGGA1 and TGGA3, due to uniformity distribution of the amount of the textile cellulosic waste. Nonetheless, the elongation at break and water vapor permeability were decreased with the increased amount of the textile waste. Morphological structure of the synthesized composites such as cotton fibers and matrices were visible, rough and non-void area in all the samples. Besides, incorporation of the plasticizing agents confirmed that the TGGA - composites displayed better extensibility and flexibility compared to non-plasticizing composite films currently reported in the literature. Importantly, the produced composites exhibited a functionality equivalent with original packaging materials, which were convectional and natural polymers.

Еще

Textile waste, gelatin, composites, glycerin, physico-mechanical properties, valorization

Короткий адрес: https://sciup.org/140305675

IDR: 140305675   |   DOI: 10.20914/2310-1202-2024-1-242-248

Список литературы Valorization and characterization of the physicomechanical properties of textile waste for polymer composites

  • Radhakrishnan S. Denim recycling. Textiles and Clothing Sustainability: Recycled and Upcycled Textiles and Fashion. 2017. pp. 79-125. doi: 10.1007/978-981-10-2146-6_3
  • Wallander M. Why textile waste should be banned from landfills. Retrieved October. 2012. vol. 5. pp. 2013.
  • Gómez Gómez J., González Madariaga F., Rosa Sierra L., León Morán R. et al. Scrap denim-PP composites as a material for new product design. Systems&Design: Beyond Processes and Thinking. 2016. doi: 10.4995/ifdp.2016.3360
  • Wang S., Zhang T., Zhang X., Ge S. et al. Development of 3D needled composite from denim waste and polypropylene fibers for structural applications. Construction and Building Materials. 2022. vol. 314. pp. 125583. doi: 10.1016/j.conbuildmat.2021.125583.
  • Sezgin H., Kucukali-Ozturk M., Berkalp O.B., Yalcin-Enis I. Design of composite insulation panels containing 100% recycled cotton fibers and polyethylene/polypropylene packaging wastes. Journal of Cleaner Production. 2021. vol. 304. pp. 127132. doi: 10.1016/j.jclepro.2021.127132
  • Temmink R., Baghaei B., Skrifvars M. Development of biocomposites from denim waste and thermoset bio-resins for structural applications. Composites Part A: Applied Science and Manufacturing. 2018. vol. 106. pp. 59-69. doi: 10.1016/j.compositesa.2017.12.011
  • Meng X., Fan W., Wan Mahari W.A., Ge S. et al. Production of three-dimensional fiber needle-punching composites from denim waste for utilization as furniture materials. Journal of cleaner production. 2021. vol. 281. pp. 125321. doi: 10.1016/j.jclepro.2020.125321
  • Mendoza-Castillo D.I., Reynel-Ávila H.E., Bonilla-Petriciolet A., Silvestre-Albero J. Synthesis of denim waste-based adsorbents and their application in water defluoridation. Journal of Molecular Liquids. 2016. vol. 221. pp. 469-478. doi: 10.1016/j.molliq.2016.06.005
  • Zhong T., Dhandapani R., Liang D., Wang J. et al. Nanocellulose from recycled indigo-dyed denim fabric and its application in composite films. Carbohydrate polymers. 2020. vol. 240. pp. 116283. doi: 10.1016/j.carbpol.2020.116283
  • Haque A.N.M.A., Naebe M. Sustainable biodegradable denim waste composites for potential single-use packaging. Science of The Total Environment. 2022. vol. 809. pp. 152239. doi: 10.1016/j.scitotenv.2021.152239
  • Zhang X., Liu Y., Yong H., Qin Y. et al. Development of multifunctional food packaging films based on chitosan, TiO2 nanoparticles and anthocyanin-rich black plum peel extract. Food hydrocolloids. 2019. vol. 94. pp. 80-92. doi: 10.1016/j.foodhyd.2019.03.009
  • Alizadeh Sani M., Tavassoli M., Salim S.A., Azizi-lalabadi M. et al. Development of green halochromic smart and active packaging materials: TiO2 nanoparticle-and anthocyanin-loaded gelatin/κ-carrageenan films. Food Hydrocolloids. 2022. vol. 124. pp. 107324. doi: 10.1016/j.foodhyd.2021.107324
  • Khodaei D., Álvarez C., Mullen A.M. Biodegradable packaging materials from animal processing co-products and wastes: An overview. Polymers. 2021. vol. 13. no. 15. pp. 2561. doi:10.3390/роlуm13152561
  • Haghighi H., Biard S., Bigi F., de Leo R. et al. Comprehensive characterization of active chitosan-gelatin blend films enriched with different essential oils. Food Hydrocolloids. 2019. vol. 95. pp. 33-42. doi: 10.1016/j.foodhyd.2019.04.019
  • Hosseini S.F, Rezaei M., Zandi M., Farahmandghavi F. Development of bioactive fish gelatin/chitosan nanoparticles composite films with antimicrobial properties. Food chemistry. 2016. vol. 194. pp. 1266-1274. doi: 10.1016/j.foodchem.2015.09.004.
  • Martucci J.F., Ruseckaite R.A. Antibacterial activity of gelatin/copper (II)-exchanged montmorillonite films. Food hydrocolloids. 2017. vol. 64. pp. 70-77. doi: 10.1016/j.foodhyd.2016.10.030
  • Hosseini S.F., Rezaei M., Zandi M., Farahmandghavi F. Preparation and characterization of chitosan nanoparticles‐loaded fish gelatin‐based edible films. Journal of Food Process Engineering. 2016. vol. 39. no. 5. pp. 521-530. doi: 10.1111/jfpe.12246
  • Temmink R., Baghaei B., Skrifvars M. Development of biocomposites from denim waste and thermoset bio-resins for structural applications. Composites Part A: Applied Science and Manufacturing. 2018. vol. 106. pp. 59-69. doi: 10.1016/j.compositesa.2017.12.011
  • Lee J.T., Kim M.W., Song Y.S., Kang T.J. et al. Mechanical properties of denim fabric reinforced poly (lactic acid). Fibers and Polymers. 2010. vol. 11. pp. 60-66. doi: 10.1007/s12221–010–0060–6
  • Shankar S., Wang L.F., Rhim J.W. Effect of melanin nanoparticles on the mechanical, water vapor barrier, and antioxidant properties of gelatin-based films for food packaging application. Food Packaging and Shelf Life. 2019. vol. 21. pp. 100363. doi: 10.1016/j.fpsl.2019.100363
  • Echegaray M., Mondragon G., Martin L., González A. et al. Physicochemical and mechanical properties of gelatin reinforced with nanocellulose and montmorillonite. Journal of Renewable Materials. 2016. vol. 4. no. 3. pp. 206-214. doi: 10.7569/JRM.2016.634106
  • Ben Z.Y., Samsudin H., Yhaya M.F. Glycerol: Its properties, polymer synthesis, and applications in starch based films. European Polymer Journal. 2022. vol. 175. pp. 111377. doi: 10.1016/j.eurpolymj.2022.111377
  • Li X., Zhang H., He L., Chen Z. et al. Flexible nanofibers-reinforced silk fibroin films plasticized by glycerol. Composites Part B: Engineering. 2018. vol. 152. pp. 305-310. doi: 10.1016/j.compositesb.2018.08.136
  • Ili Balqis A.M., Nor Khaizura M.A.R, Russly A.R., Nur Hanani Z.A. Effects of plasticizers on the physicochemical properties of kappa-carrageenan films extracted from Eucheuma cottonii. International journal of biological macromolecules. 2017. vol. 103. pp. 721-732. doi: 10.1016/j.ijbiomac.2017.05.105
  • Kalantarmahdavi M., Salari A., Pasdar Z., Amiryousefi M.R. Edible hyaluronic acid‐rich burger separator discs prepared from slaughterhouse waste. Food Science & Nutrition. 2022. vol. 10. no. 10. pp. 3515-3526. doi: 10.1002/fsn3.2740.
  • Fatima S., Mir M.I., Khan M.R., Sayyed R.Z. et al. The optimization of gelatin extraction from chicken feet and the development of gelatin based active packaging for the shelf-life extension of fresh grapes. Sustainability. 2022. vol. 14. no. 13. pp. 7881. doi: 10.3390/su14137881
  • Said N.S., Sarbon N.M. Response surface methodology (RSM) of chicken skin gelatin based composite films with rice starch and curcumin incorporation. Polymer Testing. 2020. vol. 81. pp. 106161. doi: 10.1016/j.polymertesting.2019.106161
  • Xiao C., Zhang Z., Zhang J., Lu Y. et al. Properties of regenerated cellulose films plasticized with α‐monoglycerides. Journal of applied polymer science. 2003. vol. 89. no. 13. pp. 3500-3505. doi: 10.1002/app.12509
  • Hubbe M.A., Ferrer A., Tyagi P., Yin Y. et al. Nanocellulose in thin films, coatings, and plies for packaging applications: A review. BioResources. 2017. vol. 12. no. 1. pp. 2143-2233. doi: 10.15376/biores.12.1.2143–2233
  • Tyuftin A.A., Kerry J.P. Gelatin films: Study review of barrier properties and implications for future studies employing biopolymer films. Food Packaging and Shelf Life. 2021. vol. 29. pp. 100688. doi: 10.1016/j.fpsl.2021.100688
Еще
Статья научная