Ванадий в среде обитания как фактор риска негативной модификации клеточной гибели: научный обзор
Автор: Долгих О.В., Дианова Д.Г., Казакова О.А.
Журнал: Анализ риска здоровью @journal-fcrisk
Рубрика: Аналитические обзоры
Статья в выпуске: 4 (32), 2020 года.
Бесплатный доступ
Отражены результаты исследований по изучению влияния ванадия и его соединений, загрязняющих среду обитания человека, на нарушения состояния здоровья, ассоциированные с дисрегуляцией процесса клеточной гибели. Актуальность исследований последних десятилетий по раскрытию механизмов апоптоза в условиях воздействия химических веществ техногенной природы обусловлена биологической значимостью этого феномена в системе приспособления организма к действию факторов среды. Рассматриваются особенности механизмов апоптоза в условиях избыточного техногенного химического окружения соединениями ванадия. Проведен и представлен анализ научных материалов с формированием научной гипотезы в рамках данной тематики. Показан иммуномодулирующий эффект соединений ванадия, характеризующийся способностью модифицировать события апоптоза за счет смены режимов клеточной смерти (активация / ингибирование апоптоза), что обеспечивает адаптацию организма к изменяющимся условиям среды. Узкий диапазон концентрации ванадия между его эссенциальностью и токсичностью предопределяет разнонаправленные изменения в запуске и завершении апоптоза. Так, индуцированная активация апоптоза способствует развитию аутоиммунных, иммунопролиферативных процессов, в то же время ингибирование клеточной гибели может вызывать иммунодефицитные состояния, воспалительные реакции, нейродегенеративные заболевания. Показано модифицирующее влияние соединений ванадия на регуляцию функции митохондрий, изменение соотношения фосфорилирования / дефосфорилирования белковых продуктов, дисбаланс свободнорадикальных процессов, что в итоге нарушает баланс про- и антиапоптотических сигналов в клетке. Мониторинг показателей апоптоза, характеризующих особенности клеточной гибели в условиях экспозиции ванадия и его соединений, позволит своевременно выявить риск формирования предболезни и предотвратить нанесение вреда здоровью.
Риск, ванадий, среда обитания, клеточная гибель, механизм апоптоза, модификация митохондриальной активности, свободнорадикальное окисление, вред здоровью
Короткий адрес: https://sciup.org/142226401
IDR: 142226401 | DOI: 10.21668/health.risk/2020.4.18
Список литературы Ванадий в среде обитания как фактор риска негативной модификации клеточной гибели: научный обзор
- Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018 / L. Galluzzi, I. Vitale, S.A. Aaronson, J.M. Abrams, D. Adam, P. Agostinis, E.S. Alnemri, L. Altucci [et al.] // Cell Death & Differentiation. - 2018. - Vol. 25, № 3. - Р. 486-541. DOI: 10.1038/s41418-017-0012-4
- Essential versus accessory aspects of cell death: recommendations of the NCCD 2015 / L. Galluzzi, J.M. Bravo-San Pedro, I. Vitale, S.A. Aaronson, J.M. Abrams, D. Adam, E.S. Alnemri, L. Altucci [et al.] // Cell Death & Differentiation. - 2015. - Vol. 22, № 1. - Р. 58-73. DOI: 10.1038/cdd.2014.137
- Zwolak I. Protective effects of dietary antioxidants against vanadium-induced toxicity: A Review // Oxid. Med. Cell. Longev. - 2020. - Vol. 7, № 2020. - P. 1490316. DOI: 10.1155/2020/1490316
- Vanadium dioxide nanocoating induces tumor cell death through mitochondrial electron transport chain interruption / J. Li, M. Jiang, H. Zhou, P. Jin, K.M.C. Cheung, P.K. Chu, K.W.K. Yeung // Global Challenges. - 2019. - Vol. 3, № 3. - P. 1800058. DOI: 0.1002/gch2.201800058
- Exploring oxidovanadium (IV) homoleptic complexes with 8-hydroxyquinoline derivatives as prospective antitrypanosomal agents / G. Scalese, I. Machado, I. Correia, J.C. Pessoa, L. Bilbao, L. Perez-Diaz, D. Gambino // NJC. - 2019. - № 45. - Р. 17756-17773. DOI: 10.1039/c9nj02589h
- Rehder D. Vanadium. Its role for humans // Met. Ions Life Sci. - 2013. - № 13. - Р. 139-169.
- DOI: 10.1007/978-94-007-7500-8_5
- Vanadium in biological action: chemical, pharmacological aspects, and metabolic implications in diabetes mellitus / S. Treviño, A. Díaz, E. Sánchez-Lara, B.L. Sanchez-Gaitan, J.M. Perez-Aguilar, E. González-Vergara // Biol. Trace. Elem. Res. - 2019. - № 188. - P. 68-98.
- DOI: 10.1007/s12011-018-1540-6
- Rehder D. The role of vanadium in biology // Metallomics. - 2015. - № 7. - Р. 730-742.
- DOI: 10.1039/C4MT00304G
- Воробьева Н.М., Федорова Е.В., Баранова Н.И. Ванадий: биологическая роль, токсикология и фармакологическое применение // Биосфера. - 2013. - Т. 5, № 1. - С. 77-96.https://elibrary.ru/pic/1pix.gif
- Dolgikh O.V., Zaitseva N.V., Dianova D.G. Regulation of apoptotic signal by strontium in immunocytes // Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology. - 2016. - Vol. 10, № 2. - Р. 158-161.
- DOI: 10.1134/S1990747816010049
- Heavy metals contaminating the environment of a progressive supranuclear palsy cluster induce tau accumulation and cell death in cultured neurons / C. Alquezar, J.B. Felix, E. McCandlish, B.T. Buckley, D. Caparros-Lefebvre, C.M. Karch, L.I. Golbe, A.W. Kao // Scientific Reports. - 2020. - Vol. 10, № 569. - P. 12.
- DOI: 10.1038/s41598-019-56930-w
- Anti-cancer effect of gallic acid in presence of low level laser irradiation: ROS production and induction of apoptosis and ferroptosis / K. Khorsandi, Z. Kianmehr, Z. Hosseinmardi, R. Hosseinzadeh // Cancer Cell. Int. - 2020. - Vol. 20, № 18. - P. 18.
- DOI: 10.1186/s12935-020-1100-y
- Дианова Д.Г., Долгих О.В. Экспозиция ванадием как фактор негативной активации лимфоцитов // Уральский медицинский журнал. - 2012. - Т. 102, № 10. - С. 78-80.
- Paradigm of Vanadium pentoxide nanoparticle-induced autophagy and apoptosis in triple-negative breast cancer cells / P.R.P. Suma, R.A. Padmanabhan, S.R. Telukutla, R. Ravindran, A.K.G. Velikkakath, C.D. Dekiwadia, W. Paul, S.J. Shenoy [et al.] // BioRxiv. - 2019. - № 18. - P. 33.
- DOI: 10.1101/810200
- MacGregor J.A., White D.J., Williams A.L. The limitations of using the NTP chronic bioassay on vanadium pentoxide in risk assessments // Regul Toxicol Pharmacol. - 2020. - № 113. - P. 104650.
- DOI: 10.1016/j.yrtph.2020.104650
- Adam M.S.S., Elsawy H. Biological potential of oxo-vanadium salicylediene amino-acid complexes as cytotoxic, antimicrobial, antioxidant and DNA interaction // J. Photoch. Photobio. B. - 2018. - № 184. - P. 34-43.
- DOI: 10.1016/j.jphotobiol.2018.05.002
- Ванадийсодержащие соединения: химия, синтез, инсулиномиметические свойства / Е.В. Федорова, А.В. Бурякина, Н.М. Воробьёва, Н.И. Баранова // Биомедицинская химия. - 2014. - Т. 60, № 4. - С. 416-429.
- Estimation of the daily soil/dust (SD) ingestion rate of children from Gansu Province, China via hand-to-mouth contact using tracer elements / J. Ma, L.B. Pan, Q. Wang, C.Y. Lin, X.L. Duan, H. Hou // Environ. Geochem. Health. - 2018. - Vol. 40, № 1. - Р. 295-301.
- DOI: 10.1007/s10653-016-9906-1
- Occurrence of selected elements (Ti, Sr, Ba, V, Ga, Sn, Tl, and Sb) in deposited dust and human hair samples: implications for human health in Pakistan / S.A.M.A.S. Eqani, Z.I. Tanveer, C. Qiaoqiao, A. Cincinelli, Z. Saqib, S.I. Mulla, N. Ali, I.A. Katsoyiannis [et al.] // ESPR. - 2018. - Vol. 25, № 13. - Р. 12234-12245.
- DOI: 10.1007/s11356-017-0346-y
- Пятиконнова А.М., Поздняков А.М., Саркитов Ш.С. Токсическое действие ванадия и его соединений // Успехи современного естествознания. - 2013. - № 9. - С. 120.
- Biochemical and medical importance of vanadium compounds / J. Korbecki, I. Baranowska-Bosiacka, I. Gutowska, D. Chlubek // Acta. Biochim. Pol. - 2012. - Vol. 59, № 2. - P. 195-200.
- Toxicological review of vanadium pentoxide (V2O5) (CAS No. 1314-62-1). In Support of Summary Information on the Integrated Risk Information System (IRIS). - Washington, DC: U.S. Environmental Protection Agency, 2011. - Р. 210.
- Why antidiabetic vanadium complexes are not in the pipeline of "big pharma" drug research? A Critical Review / T. Scior, J.A. Guevara-Garcia, Q.T. Do, P. Bernard, S. Lauferd // Сurr Med. Chem. - 2016. - Vol. 23, № 25. - Р. 2874-2891.
- DOI: 10.2174/0929867323666160321121138
- On the transport of vanadium in blood serum / D. Sanna, M. Serra, G. Micera, E. Garribba // Inorg. Chem. - 2009. - Vol. 48, № 13. - Р. 5747-5757.
- DOI: 10.1021/ic802287s
- Speciation of potential anti-diabetic vanadium complexes in real serum samples / D. Sanna, M. Serra, G. Micera, E. Garribba // J. Inorg. Biochem. - 2017. - № 173. - Р. 2-65.
- DOI: 10.1016/j.jinorgbio.2017.04.023
- Vivo complexes with antibacterial quinolone ligands and their interaction with serum proteins / D. Sanna, V. Ugone, G. Sciortino, P. Buglyó, Z. Bihari, P.L. Parajdi Losonczi, E. Garribba // Dalton Trans. - 2018. - Vol. 47, № 7. - Р. 2164-2182.
- DOI: 10.1039/c7dt04216g
- Rehder D. The (Biological) Speciation of Vanadate (V) as Revealed by 51V NMR - A Tribute on Lage Pettersson and His Work // J. Inorg. Biochem. - 2015. - Vol. 147. - Р. 25-31.
- DOI: 10.1016/j.jinorgbio.2014.12.014
- Vanadium-induced apoptosis and pulmonary inflammation in mice: role of reactive oxygen species / L. Wang, D. Medan, R. Mercer, D. Overmiller, S. Leornard, V. Castranova, X. Shi, M. Ding [et al.] // J. Cell. Physiol. - 2003. - Vol. 195, № 1. - Р. 99-107.
- DOI: 10.1002/jcp.10232
- Sodium orthovanadate inhibits growth and triggers apoptosis of human anaplastic thyroid carcinoma cells in vitro and in vivo / Q.Y.W. Jiang, D. Li, M. Gu, K. Liu, L. Dong, C. Wang, H. Jiang, W. Dai // Oncol. Lett. - 2019. - Vol. 17, № 5. - Р. 4255-4262. 10.1016/S0168-8278 (00) 80101-4
- DOI: 10.1016/S0168-8278(00)80101-4
- Irving E., Stoker A.W. Vanadium compounds as PTP inhibitors // Molecules. - 2017. - Vol. 22, № 12. - P. 2269.
- DOI: 10.3390/Molecules22122269
- Toxicity of vanadium on isolated rat liver mitochondria: A new mechanistic approach / M.-J. Hosseini, F. Shaki, M. Ghazi-Khansari, J. Pourahmad // Metallomics. - 2013. - Vol. 5, № 2. - Р. 152-156.
- DOI: 10.1039/c2mt20198d
- Toxicity of native and oxovanadium (IV/V) galactomannan complexes on HepG2 cells is related to impairment of mitochondrial functions / M.M. Cunha-de Padua, S.M.S.C. Cadena, C.L.O. Petkowicz, G.R. Martinez, M. Merlin-Rocha, A.L. Merce, G.R. Noleto // Carbohydrate Polymers. - 2017. - Vol. 1, № 173. - Р. 665-675.
- DOI: 10.1016/j.carbpol.2017.06.027
- Vanadium compounds induced mitochondria permeability transition pore (PTP) opening related to oxidative stress / Y. Zhao, L. Ye, H. Liu, Q. Xia, Y. Zhang, X. Yang, K. Wang // J. Inorg. Biochem. - 2010. - Vol. 104, № 4. - Р. 371-378.
- DOI: 10.1016/j.jinorgbio
- Молекулярные маркеры каспаза-зависимого и митохондриального апоптоза: роль в развитии патологии и в процессах клеточного старения / А.С. Дятлова, А.В. Дудков, Н.С. Линькова, В.Х. Хавинсон // Успехи современной биологии. - 2018. - Т. 138, № 2. - С. 126-137.
- Oxidative stress and vanadium [Электронный ресурс] / M. Rojas-Lemus, P. Bizarro-Nevares, N. López-Valdez, A. González-Villalva, G. Guerrero-Palomo, M.E. Cervantes-Valencia, O. Tavera-Cabrera, N. Rivera-Fernández [et al.] // IntechOpen. - 2020. - URL: https: //www.intechopen.com/online-first/oxidative-stress-and-vanadium (дата обращения: 29.09.2020).
- In vitro study of the protective effect of manganese against vanadium-mediated nuclear and mitochondrial DNA damage / L. Rivas-García, J.L. Quiles, L.A. Varela, M. Arredondo, P. Lopez, A.R. Dieguez, P. Aranda, J. Llopis [et al.] // Food and Chemical Toxicology. - 2019. - № 135. - P. 110900.
- DOI: 10.1016/j.fct.2019.110900
- Vanadium pentoxide: Use of relevant historical control data shows no evidence for carcinogenic response in F344/N rats / T.B. Starr, J.A. Macgregor, K.D. Ehman, A.I. Kikiforov // Regul. Toxicol. Pharmacol. - 2012. - Vol. 64, № 1. - Р. 155-160.
- DOI: 10.1016/j.yrtph.2012.06.017
- Essentiality and toxicity of vanadium supplements in health and pathology / K. Gruzewska, A. Michno, T. Pawelczyk, H. Bielarczyk // J. Physiol. Pharmacol. - 2014. - Vol. 65, № 5. - Р. 603-611.
- An EXAFS Approach to the Study of Polyoxometalate-Protein Interactions: The Case of Decavanadate-Actin / M.P.M. Marques, D. Gianolio, S. Ramos, L.A.E. Batista de Carvalho, M. Aureliano // Inorg Chem. - 2017. - Vol. 56, № 18. - Р. 10893-10903.
- DOI: 10.1021/acs.inorgchem.7b01018
- Rb (+) occlusion stabilized by vanadate in gastric H(+)/K(+)-ATPase at 25 °C / M.R. Montes, A.J. Spiaggi, J.L. Monti, F. Cornelius, C. Olesen, P.J. Garrahan, R.C. Rossi // Biochim. Biophys. Acta. - 2011. - Vol. 1808, № 1. - Р. 316-322.
- DOI: 10.1016/j.bbamem.2010.08.022
- Silencing of proteasome 26S subunit ATPase 2 regulates colorectal cancer cell proliferation, apoptosis, and migration / J. He, J. Xing, X. Yang, C. Zhang, Y. Zhang, H. Wang, X. Xu, H. Wang [et al.] // Chemotherapy. - 2019. - Vol. 64, № 3. - Р. 146-154.
- DOI: 10.1159/000502224
- Inhibitory effects of decavanadate on several enzymes and Leishmania tarentolae in vitro / T.L. Turner, V.H. Nguyen, C.C. McLauchlan, Z. Dymon, B.M. Dorsey, J.D. Hooker, M.A. Jones // J. Inorg. Biochem. - 2011. - № 108. - Р. 96-104.
- DOI: 10.1016/j.jinorgbio.2011.09.009
- Vanadium-phosphatase complexes: Phosphatase inhibitors favor the trigonal bipyramidal transition state geometries / C.C. McLauchlan, B.J. Peters, G.R. Willsky, D.C. Crans // Coord. Chem. Rev. - 2015. - Vol. 301-302, № 15. - Р. 163-199.
- DOI: 10.1016/j.ccr.2014.12.012
- Inhibition protein tyrosine phosphatases by an oxovanadium glutamate complex, Na2[VO (Glu)2(CH3OH)] (Glu = glutamate) / L. Lu, S. Wang, M. Zhu, Z. Liu, M. Guo, S. Xing, X. Fu // Biometals. - 2010. - Vol. 23, № 6. - Р. 1139-1147.
- DOI: 10.1007/s10534-010-9363-8
- Vanadium compounds as pro-inflammatory agents: effects on cyclooxygenases / J. Korbecki, I. Baranowska-Bosiacka, I. Gutowska, D. Chlubek // Int. J. Mol. Sci. - 2015. - Vol. 16, № 6. - Р. 12648-12668.
- DOI: 10.3390/ijms160612648
- CD95/FAS, Non-apoptotic signaling pathways, and kinases / M.L. Gallo, A. Poissonnier, P. Blanco, P. Legembre // Front. Immunol. - 2017. - Vol. 27, № 8. - P. 1216.
- DOI: 10.3389/fimmu.2017.01216
- Lingrel J.B. The physiological significance of the cardiotonic steroid/ouabainbinding site of the Na, K-ATPase // Annu. Rev. Physiol. - 2010. - Vol. 17, № 72. - Р. 395-412.
- DOI: 10.1146/annurev-physiol-021909-135725
- Vanadate oxidative and apoptotic effects are mediated by the MAPK-Nrf2 pathway in layer oviduct magnum epithelial cells / J. Wang, X. Huang, K. Zhang, X. Mao, X. Ding, Q. Zeng, S. Bai, Y. Xuan [et al.] // Metallomics. - 2017. - Vol. 9, № 11. - Р. 1562-1575.
- DOI: 10.1039/c7mt00191f
- Vanadium pentoxide prevents NK-92MI cell proliferation and IFNγ secretion through sustained JAK3 phosphorylation / F. Gallardo-Vera, D. Diaz, M. Tapia-Rodriguez, G.T. Fortoul, F. Masso, E. Rendon-Huerta, L.F. Montaño // J. of Immunotoxicol. - 2016. - Vol. 13, № 1. - Р. 27-37.
- DOI: 10.3109/1547691X.2014.996681
- Guegan J.-P., Legembre P. Nonapoptotic functions of FAS/CD95 in the immuneresponse // FEBS. - 2018. - Vol. 285, № 5. - Р. 809-827.
- DOI: 10.1111/febs.14292
- Activation of the NF-κB and MAPK signaling pathways contributes to the inflammatory responses, but not cell injury, in IPEC-1 cells challenged with hydrogen peroxide / K. Xiao, C. Liu, Z. Tu, Q. Xu, S. Chen, Y. Zhang, X. Wang, J. Zhang [et al.] // Oxid. Med. Cell. Longev. - 2020. - № 2020. - P. 5803639.
- DOI: 10.1155/2020/5803639
- Comprehensive analysis of ERK1/2 substrates for potential combination immunotherapies / L. Yang, L. Zheng, W.J. Chng, J.L. Ding // Trends Pharmacol. Sci. - 2019. - Vol. 40, № 11. - Р. 897-910.
- DOI: 10.1016/j.tips.2019.09.005
- Wortzel I., Seger R. The ERK cascade: distinct functions within various subcellular organelles // Genes Cancer. - 2011. - Vol. 2, № 3. - Р. 195-209.
- DOI: 10.1177/1947601911407328
- Antiproliferative activity of vanadium compounds: effects on the major malignant melanoma molecular pathways / M. Pisano, C. Arru, M. Serra, G. Galleri, D. Sanna, E. Garribba, G. Palmieri, C. Rozzo // Metallomics. - 2019. - Vol. 11, № 10. - Р. 1687-1699.
- DOI: 10.1039/C9MT00174C
- MAP kinases and prostate cancer / G. Rodrıguez-Berriguete, B. Fraile, P. Martınez-Onsurbe, G. Olmedilla, R. Paniagua, M. Royuela // J. Signal. Transduction. - 2012. - № 2012. - P. 169170.
- DOI: 10.1155/2012/169170
- Мисюрин В.А. Структура и свойства основных рецепторов и лигандов внешнего пути апоптоза // Российский биотерапевтический журнал. - 2015. - Т. 14, № 2. - С. 23-30.
- Regulation of FAS Ligand expression during activationinduced cell death in T cells by p38 mitogen-activated protein kinase and c-Jun NH2-terminal kinase / B.J. Zhang, J.-X. Gao, K. Salojin, Q. Shao, M. Grattan, C. Meagher, D.W. Laird, T.L. Delovitch // J. Exp. Med. - 2000. - Vol. 191, № 6. - Р. 1017-1030.
- DOI: 10.1084/jem.191.6.1017
- Sodium orthovanadate inhibits growth and triggers apoptosis of human anaplastic thyroid carcinoma cells in vitro and in vivo / Q.Y.W. Jiang, D. Li, M. Gu, K. Liu, L. Dong, C. Wang, H. Jiang, W. Dai // Oncol. Lett. - 2019. - Vol. 17, № 5. - Р. 4255-4262.
- DOI: 10.3892/ol.2019.10090
- Vanadium complex induced apoptosis in hepg2 cells by the up-regulation of p53, p21, and caspase-8 / H.B. Aliabad, S.K. Falahati-Pour, H. Ahmadirad, M. Mohamadi, M.R. Hajizadeh, G. Bakhshi, M. Mahmoodi // WCRJ. - 2019. - № 6. - P. e1293.
- DOI: 10.32113/wcrj_20195_1293
- Activation of phosphatidylinositol 3-kinase/protein kinase B pathway by a vanadyl compound mediates its neuroprotective effect in mouse brain ischemia / N. Shioda, T. Ishigami, F. Han, S. Moriguchi, M. Shibuya, Y. Iwabuchi, K. Fukunaga // Neuroscience. - 2007. - Vol. 148, № 1. - Р. 221-229.
- DOI: 10.1016/j.neuroscience.2007.05.040
- Vanadium-induced apoptosis of HaCaT cells is mediated by c-fos and involves nuclear accumulation of clusterin / S. Markopoulou, E. Kontargiris, C. Batsi, T. Tzavaras, I. Trougakos, D.A. Boothman, E.S. Gonos, E. Kolettas // FEBS J. - 2009. - Vol. 276, № 14. - Р. 3784-3799.
- DOI: 10.1111/j.1742-4658.2009.07093.x
- Халил А., Джемесон М. Ортованадат натрия ингибирует пролиферацию и запускает апоптоз в клетках оральной сквамозной клеточной карциномы in vitro // Биохимия. - 2017. - Т. 82, № 2. - С. 258-265.
- New oxidovanadium (IV) coordination complex containing 2-methylnitrilotriacetate ligands induces cell cycle arrest and autophagy in human pancreatic ductal adenocarcinoma cell lines / S. Kowalski, D. Wyrzykowski, S. Hac, M. Rychlowski, M.W. Radomski, I. Inkielewicz-Stepniak // IJMS. - 2019. - Vol. 20, № 2. - P. 261.
- DOI: 10.3390/ijms20020261
- Anti-angiogenic vanadium pentoxide nanoparticles for the treatment of melanoma and their in vivo toxicity study / S. Das, A. Roy, A.K. Barui, M.M.A. Alabbasi, M. Kuncha, R. Sistla, B. Sreedhar, C.R. Patra // Nanoscale. - 2020. - Vol. 12, № 14. - Р. 7604-7621.
- DOI: 10.1039/d0nr00631a
- Galluzzi L., Vitale I., Aaronson S.A., Abrams J.M., Adam D., Agostinis P., Alnemri E.S., Altucci L. [et al.]. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell. Death & Differentiation, 2018, vol. 25, no. 3, pp. 486-541.
- DOI: 10.1038/s41418-017-0012-4
- Galluzzi L., Bravo-San Pedro J.M., Vitale I., Aaronson S.A., Abrams J.M., Adam D., Alnemri E.S., Altucci L. [et al.]. Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell. Death & Differentiation, 2015, vol. 22, no. 1, pp. 58-73.
- DOI: 10.1038/cdd.2014.137
- Zwolak I. Protective effects of dietary antioxidants against vanadium-induced toxicity: A Review. Oxid. Med. Cell. Longev, 2020, vol. 7, no. 2020, pp. 1490316.
- DOI: 10.1155/2020/1490316
- Li J., Jiang M., Zhou H., Jin P., Cheung K.M.C., Chu P.K., Yeung K.W.K. Vanadium dioxide nanocoating induces tumor cell death through mitochondrial electron transport chain interruption. Global Challenges, 2019, vol. 3, no. 3, pp. 1800058. DOI: 0.1002/gch2.201800058
- Scalese G., Machado I., Correia I., Pessoa J.C., Bilbao L., Perez-Diaz L., Gambino D. Exploring oxidovanadium (IV) homoleptic complexes with 8-hydroxyquinoline derivatives as prospective antitrypanosomal agents. NJC, 2019, no. 45, pp. 17756-17773.
- DOI: 10.1039/c9nj02589h
- Rehder D. Vanadium. Its role for humans. Met. Ions Life Sci, 2013, no. 13, pp. 139-169.
- DOI: 10.1007/978-94-007-7500-8_5
- Treviño S., Díaz A., Sánchez-Lara E., Sanchez-Gaitan B.L., Perez-Aguilar J.M., González-Vergara E. Vanadium in biological action: chemical, pharmacological aspects, and metabolic implications in diabetes mellitus. Biol. Trace. Elem. Res, 2019, no. 188, pp. 68-98.
- DOI: 10.1007/s12011-018-1540-6
- Rehder D. The role of vanadium in biology. Metallomics, 2015, no. 7, pp. 730-742.
- DOI: 10.1039/C4MT00304G
- Vorob'eva N.M., Fedorova E.V., Baranova N.I. Vanadium: Its biological role, toxicology, and pharmacological applications. Biosfera, 2013, vol. 5, no. 1, pp. 77-96 (in Russian).https://elibrary.ru/pic/1pix.gif
- Dolgikh O.V., Zaitseva N.V., Dianova D.G. Regulation of apoptotic signal by strontium in immunocytes. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2016, vol. 10, no. 2, pp. 158-161.
- DOI: 10.1134/S1990747816010049
- Alquezar C., Felix J.B., McCandlish E., Buckley B.T., Caparros-Lefebvre D., Karch C.M., Golbe L.I., Kao A.W. Heavy metals contaminating the environment of a progressive supranuclear palsy cluster induce tau accumulation and cell death in cultured neurons. Scientific Reports, 2020, vol. 10, no. 569, pp. 12.
- DOI: 10.1038/s41598-019-56930-w
- Khorsandi K., Kianmehr Z., Hosseinmardi Z., Hosseinzadeh R. Anti-cancer effect of gallic acid in presence of low level laser irradiation: ROS production and induction of apoptosis and ferroptosis. Cancer Cell. Int, 2020, vol. 20, no. 18, pp. 18.
- DOI: 10.1186/s12935-020-1100-y
- Dianova D.G., Dolgikh O.V. Exposure of vanadium as a factor of adverse activation of lymphocytes. Ural'skii meditsinskii zhurnal, 2012, vol. 102, no. 10, pp. 78-80 (in Russian).
- Suma P.R.P., Padmanabhan R.A., Telukutla S.R., Ravindran R., Velikkakath A.K.G., Dekiwadia C.D., Paul W., Shenoy S.J. [et al.]. Paradigm of Vanadium pentoxide nanoparticle-induced autophagy and apoptosis in triple-negative breast cancer cells. bioRxiv, 2019, no. 18, pp. 33.
- DOI: 10.1101/810200
- MacGregor J.A., White D.J., Williams A.L. The limitations of using the NTP chronic bioassay on vanadium pentoxide in risk assessments. Regul. Toxicol. Pharmacol., 2020, no. 113, pp. 104650.
- DOI: 10.1016/j.yrtph.2020.104650
- Adam M.S.S., Elsawy H. Biological potential of oxo-vanadium salicylediene amino-acid complexes as cytotoxic, antimicrobial, antioxidant and DNA interaction. J. Photoch. Photobio. B., 2018, no. 184, pp. 34-43.
- DOI: 10.1016/j.jphotobiol.2018.05.002
- Fedorova E.V., Buryakina A.V., Vorob'eva N.M., Baranova N.I. The vanadium compounds: chemistry, synthesys, insulinomimetic properties. Biomeditsinskaya khimiya, 2014, vol. 60, no. 4, pp. 416-429 (in Russian).
- Ma J., Pan L.B., Wang Q., Lin C.Y., Duan X.L., Hou H. Estimation of the daily soil/dust (SD) ingestion rate of children from Gansu Province, China via hand-to-mouth contact using tracer elements. Environ. Geochem. Health, 2018, vol. 40, no. 1, pp. 295-301.
- DOI: 10.1007/s10653-016-9906-1
- Eqani S.A.M.A.S., Tanveer Z.I., Qiaoqiao C., Cincinelli A., Saqib Z., Mulla S.I., Ali N., Katsoyiannis I.A. [et al.]. Occurrence of selected elements (Ti, Sr, Ba, V, Ga, Sn, Tl, and Sb) in deposited dust and human hair samples: implications for human health in Pakistan. ESPR, 2018, vol. 25, no. 13, pp. 12234-12245.
- DOI: 10.1007/s11356-017-0346-y
- Pyatikonnova A.M., Pozdnyakov A.M., Sarkitov Sh.S. Toksicheskoe deistvie vanadiya i ego soedinenii [Toxic effects produced by vanadium and its compounds]. Uspekhi sovremennogo estestvoznaniya, 2013, no. 9, pp. 120 (in Russian).
- Korbecki J., Baranowska-Bosiacka I., Gutowska I., Chlubek D. Biochemical and medical importance of vanadium compounds. Acta. Biochim. Pol., 2012, vol. 59, no. 2, pp. 195-200.
- Toxicological review of vanadium pentoxide (V2O5) (CAS No. 1314-62-1). In Support of Summary Information on the Integrated Risk Information System (IRIS). Washington, DC, U.S. Environmental Protection Agency Publ., 2011, 210 p.
- Scior T., Guevara-Garcia J.A., Do Q.T., Bernard P., Lauferd S. Why antidiabetic vanadium complexes are not in the pipeline of "big pharma" drug research? A Critical Review. Curr. Med. Chem., 2016, vol. 23, no. 25, pp. 2874-2891.
- DOI: 10.2174/0929867323666160321121138
- Sanna D., Serra M., Micera G., Garribba E. On the transport of vanadium in blood serum. Inorg. Chem, 2009, vol. 48, no. 13, pp. 5747-5757.
- DOI: 10.1021/ic802287s
- Sanna D., Serra M., Micera G., Garribba E. Speciation of potential anti-diabetic vanadium complexes in real serum samples. J. Inorg. Biochem, 2017, no. 173, pp. 2-65.
- DOI: 10.1016/j.jinorgbio.2017.04.023
- Sanna D., Ugone V., Sciortino G., Buglyó P., Bihari Z., Parajdi Losonczi P.L., Garribba E. Vivo complexes with antibacterial quinolone ligands and their interaction with serum proteins. Dalton Trans, 2018, vol. 47, no. 7, pp. 2164-2182.
- DOI: 10.1039/c7dt04216g
- Rehder D. The (Biological) Speciation of Vanadate (V) as Revealed by 51V NMR - A Tribute on Lage Pettersson and His Work. J. Inorg. Biochem, 2015, vol. 147, pp. 25-31.
- DOI: 10.1016/j.jinorgbio.2014.12.014
- Wang L., Medan D., Mercer R., Overmiller D., Leornard S., Castranova V., Shi X., Ding M. [et al.]. Vanadium-induced apoptosis and pulmonary inflammation in mice: role of reactive oxygen species. J. Cell. Physiol, 2003, vol. 195, no. 1, pp. 99-107.
- DOI: 10.1002/jcp.10232
- Jiang Q.Y.W., Li D., Gu M., Liu K., Dong L., Wang C., Jiang H., W Dai. Sodium orthovanadate inhibits growth and triggers apoptosis of human anaplastic thyroid carcinoma cells in vitro and in vivo. Oncol. Lett, 2019, vol. 17, no. 5, pp. 4255-4262.
- DOI: 10.1016/S0168-8278(00)80101-4
- Irving E., Stoker A.W. Vanadium compounds as PTP inhibitors. Molecules, 2017, vol. 22, no. 12, pp. 2269.
- DOI: 10.3390/Molecules22122269
- Hosseini M.-J., Shaki F., Ghazi-Khansari M., Pourahmad J. Toxicity of vanadium on isolated rat liver mitochondria: A new mechanistic approach. Metallomics, 2013, vol. 5, no. 2, pp. 152-156.
- DOI: 10.1039/c2mt20198d
- Cunha-de Padua M.M., Cadena S.M.S.C., Petkowicz C.L.O., Martinez G.R., Merlin-Rocha M., Merce A.L., Noleto G.R. Toxicity of native and oxovanadium (IV/V) galactomannan complexes on HepG2 cells is related to impairment of mitochondrial functions. Carbohydrate Polymers, 2017, vol. 1, no. 173, pp. 665-675.
- DOI: 10.1016/j.carbpol.2017.06.027
- Zhao Y., Ye L., Liu H., Xia Q., Zhang Y., Yang X., Wang K. Vanadium compounds induced mitochondria permeability transition pore (PTP) opening related to oxidative stress. J. Inorg. Biochem, 2010, vol. 104, no. 4, pp. 371-378.
- DOI: 10.1016/j.jinorgbio
- Dyatlova A.S., Dudkov A.V., Lin'kova N.S., Khavinson V.Kh. Molecular markers of caspase-dependent and mitochondrial apoptosis: the role of pathology and cell senescence. Uspekhi sovremennoi biologii, 2018, vol. 138, no. 2, pp. 126-137 (in Russian).
- Rojas-Lemus M., Bizarro-Nevares P., López-Valdez N., González-Villalva A., Guerrero-Palomo G., Cervantes-Valencia M.E., Tavera-Cabrera O., Rivera-Fernández N. [et al.]. Oxidative stress and vanadium. IntechOpen, 2020. Available at: https://www.intechopen.com/online-first/oxidative-stress-and-vanadium (29.09.2020).
- Rivas-García L., Quiles J.L., Varela L.A., Arredondo M., Lopez P., Dieguez A.R., Aranda P., Llopis J. [et al.]. In vitro study of the protective effect of manganese against vanadium-mediated nuclear and mitochondrial DNA damage. Food and Chemical Toxicology, 2019, no. 135, pp. 110900.
- DOI: 10.1016/j.fct.2019.110900
- Starr T.B., Macgregor J.A., Ehman K.D., Kikiforov A.I. Vanadium pentoxide: Use of relevant historical control data shows no evidence for carcinogenic response in F344/N rats. Regul. Toxicol. Pharmacol., 2012, vol. 64, no. 1, pp. 155-160.
- DOI: 10.1016/j.yrtph.2012.06.017
- Gruzewska K., Michno A., Pawelczyk T., Bielarczyk H. Essentiality and toxicity of vanadium supplements in health and pathology. J. Physiol. Pharmacol, 2014, vol. 65, no. 5, pp. 603-611.
- Marques M.P.M., Gianolio D., Ramos S., Batista de Carvalho L.A.E., Aureliano M. An EXAFS Approach to the Study of Polyoxometalate-Protein Interactions: The Case of Decavanadate-Actin. Inorg. Chem., 2017, vol. 56, no. 18, pp. 10893-10903.
- DOI: 10.1021/acs.inorgchem.7b01018
- Montes M.R., Spiaggi A.J., Monti J.L., Cornelius F., Olesen C., Garrahan P.J., Rossi R.C. Rb(+) occlusion stabilized by vanadate in gastric H(+)/K(+)-ATPase at 25°C. Biochim. Biophys. Acta., 2011, vol. 1808, no. 1, pp. 316-322.
- DOI: 10.1016/j.bbamem.2010.08.022
- He J., Xing J., Yang X., Zhang C., Zhang Y., Wang H., Xu X., Wang H. [et al.]. Silencing of proteasome 26S subunit ATPase 2 regulates colorectal cancer cell proliferation, apoptosis, and migration. Chemotherapy, 2019, vol. 64, no. 3, pp. 146-154.
- DOI: 10.1159/000502224
- Turner T.L., Nguyen V.H., McLauchlan C.C., Dymon Z., Dorsey B.M., Hooker J.D., Jones M.A. Inhibitory effects of decavanadate on several enzymes and Leishmania tarentolae in vitro. J. Inorg. Biochem., 2011, no. 108, pp. 96-104.
- DOI: 10.1016/j.jinorgbio.2011.09.009
- McLauchlan C.C., Peters B.J., Willsky G.R., Crans D.C. Vanadium-phosphatase complexes: Phosphatase inhibitors favor the trigonal bipyramidal transition state geometries. Coord. Chem. Rev., 2015, vol. 301-302, no. 15, pp. 163-199.
- DOI: 10.1016/j.ccr.2014.12.012
- Lu L., Wang S., Zhu M., Liu Z., Guo M., Xing S., Fu X. Inhibition protein tyrosine phosphatases by an oxovanadium glutamate complex, Na2[VO(Glu)2(CH3OH)](Glu = glutamate). Biometals, 2010, vol. 23, no. 6, pp. 1139-1147.
- DOI: 10.1007/s10534-010-9363-8
- Korbecki J., Baranowska-Bosiacka I., Gutowska I., Chlubek D. Vanadium compounds as pro-inflammatory agents: effects on cyclooxygenases. Int. J. Mol. Sci., 2015, vol. 16, no. 6, pp. 12648-12668.
- DOI: 10.3390/ijms160612648
- Gallo M.L., Poissonnier A., Blanco P., Legembre P. CD95/FAS, Non-apoptotic signaling pathways, and kinases. Front. Immunol, 2017, vol. 27, no. 8, pp. 1216.
- DOI: 10.3389/fimmu.2017.01216
- Lingrel J.B. The physiological significance of the cardiotonic steroid/ouabainbinding site of the Na, K-ATPase. Annu. Rev. Physiol., 2010, vol. 17, no. 72, pp. 395-412.
- DOI: 10.1146/annurev-physiol-021909-135725
- Wang J., Huang X., Zhang K., Mao X., Ding X., Zeng Q., Bai S., Xuan Y. [et al.]. Vanadate oxidative and apoptotic effects are mediated by the MAPK-Nrf2 pathway in layer oviduct magnum epithelial cells. Metallomics, 2017, vol. 9, no. 11, pp. 1562-1575.
- DOI: 10.1039/c7mt00191f
- Gallardo-Vera F., Diaz D., Tapia-Rodriguez M., Fortoul G.T., Masso F., Rendon-Huerta E., Montaño L.F. Vanadium pentoxide prevents NK-92MI cell proliferation and IFNγ secretion through sustained JAK3 phosphorylation. J. of Immunotoxicol, 2016, vol. 13, no. 1, pp. 27-37.
- DOI: 10.3109/1547691X.2014.996681
- Guegan J.-P., Legembre P. Nonapoptotic functions of FAS/CD95 in the immuneresponse. FEBS, 2018, vol. 285, no. 5, pp. 809-827.
- DOI: 10.1111/febs.14292
- Xiao K., Liu C., Tu Z., Xu Q., Chen S., Zhang Y., Wang X., Zhang J. [et al.]. Activation of the NF-κB and MAPK signaling pathways contributes to the inflammatory responses, but not cell injury, in IPEC-1 cells challenged with hydrogen peroxide. Oxid. Med. Cell. Longev, 2020, no. 2020, pp. 5803639.
- DOI: 10.1155/2020/5803639
- Yang L., Zheng L., Chng W.J., Ding J.L. Comprehensive analysis of ERK1/2 substrates for potential combination immunotherapies. Trends Pharmacol. Sci, 2019, vol. 40, no. 11, pp. 897-910.
- DOI: 10.1016/j.tips.2019.09.005
- Wortzel I., Seger R. The ERK cascade: distinct functions within various subcellular organelles. Genes Cancer, 2011, vol. 2, no. 3, pp. 195-209.
- DOI: 10.1177/1947601911407328
- Pisano M., Arru C., Serra M., Galleri G., Sanna D., Garribba E., Palmieri G., Rozzo C. Antiproliferative activity of vanadium compounds: effects on the major malignant melanoma molecular pathways. Metallomics, 2019, vol. 11, no. 10, pp. 1687-1699.
- DOI: 10.1039/C9MT00174C
- Rodrıguez-Berriguete G., Fraile B., Martınez-Onsurbe P., Olmedilla G., Paniagua R., Royuela M. MAP kinases and prostate cancer. J. Signal. Transduction, 2012, no. 2012, pp. 169170.
- DOI: 10.1155/2012/169170
- Misyurin V.A. Structure and functions of main apoptosis receptors and ligands. Rossiiskii bioterapevticheskii zhurnal, 2015, vol. 14, no. 2, pp. 23-30 (in Russian).
- Zhang B.J., Gao J.-X., Salojin K., Shao Q., Grattan M., Meagher C., Laird D.W., Delovitch T.L. Regulation of FAS Ligand expression during activationinduced cell death in T cells by p38 mitogen-activated protein kinase and c-Jun NH2-terminal kinase. J. Exp. Med, 2000, vol. 191, no. 6, pp. 1017-1030.
- DOI: 10.1084/jem.191.6.1017
- Jiang Q.Y.W., Li D., Gu M., Liu K., Dong L., Wang C., Jiang H., Dai W. Sodium orthovanadate inhibits growth and triggers apoptosis of human anaplastic thyroid carcinoma cells in vitro and in vivo. Oncol. Lett, 2019, vol. 17, no. 5, pp. 4255-4262.
- DOI: 10.3892/ol.2019.10090
- Aliabad H.B., Falahati-Pour S.K., Ahmadirad H., Mohamadi M., Hajizadeh M.R., Bakhshi G., Mahmoodi M. Vanadium complex induced apoptosis in hepg2 cells by the up-regulation of p53, p21, and caspase-8. WCRJ, 2019, no. 6, pp. e1293.
- DOI: 10.32113/wcrj_20195_1293
- Shioda N., Ishigami T., Han F., Moriguchi S., Shibuya M., Iwabuchi Y., Fukunaga K. Activation of phosphatidylinositol 3-kinase/protein kinase B pathway by a vanadyl compound mediates its neuroprotective effect in mouse brain ischemia. Neuroscience, 2007, vol. 148, no. 1, pp. 221-229.
- DOI: 10.1016/j.neuroscience.2007.05.040
- Markopoulou S., Kontargiris E., Batsi C., Tzavaras T., Trougakos I., Boothman D.A., Gonos E.S., Kolettas E. Vanadium-induced apoptosis of HaCaT cells is mediated by c-fos and involves nuclear accumulation of clusterin. FEBS J, 2009, vol. 276, no. 14, pp. 3784-3799.
- DOI: 10.1111/j.1742-4658.2009.07093.x
- Khalil A., Dzhemeson M. Sodium orthovanadate inhibits proliferation and triggers apoptosis in oral squamous cell carcinoma in vitro. Biokhimiya, 2017, vol. 82, no. 2, pp. 258-265 (in Russian).
- Kowalski S., Wyrzykowski D., Hac S., Rychlowski M., Radomski M.W., Inkielewicz-Stepniak I. New oxidovanadium (IV) coordination complex containing 2-methylnitrilotriacetate ligands induces cell cycle arrest and autophagy in human pancreatic ductal adenocarcinoma cell lines. IJMS, 2019, vol. 20, no. 2, pp. 261.
- DOI: 10.3390/ijms20020261
- Das S., Roy A., Barui A.K., Alabbasi M.M.A., Kuncha M., Sistla R., Sreedhar B., Patra C.R. Anti-angiogenic vanadium pentoxide nanoparticles for the treatment of melanoma and their in vivo toxicity study. Nanoscale, 2020, vol. 12, no. 14, pp. 7604-7621.
- DOI: 10.1039/d0nr00631a