Влияние микробиоты на терапию ингибиторами иммунных контрольных точек

Автор: Каминский В.В., Кудинова Е.А., Кулинич Т.М., Джикия Е.Л., Большакова О.Б., Горбаренко А.В., Боженко В.К.

Журнал: Вестник Российского научного центра рентгенорадиологии Минздрава России @vestnik-rncrr

Рубрика: Обзоры, лекции

Статья в выпуске: 4 т.22, 2022 года.

Бесплатный доступ

В последние годы активно изучаются новые подходы к иммунотерапии опухолей - использованию лекарственных средств, нацеленных на индукцию или усиление противоопухолевого иммунного ответа. Нацеленные на ко-ингибирующие иммунные контрольные точки моноклональные антитела продемонстрировали клиническую эффективность при терапии многих злокачественных новообразований. Однако существуют ограничения в использовании этих препаратов: возникновение нежелательных явлений, связанных с вовлечением иммунной системы, и затруднение прогноза результатов терапии. В последние годы микробиом микроокружения опухоли и желудочно-кишечного тракта, а также его метаболиты рассматриваются как предикторы и факторы, влияющие на иммунную терапию онкологических заболеваний. В нашем обзоре мы обсуждаем доклинические и клинические исследования с анализом микробного состава кишечника и микроокружения опухоли в качестве биомаркера ответа и токсичности иммунной терапии, способы влияния на микробный состав биотопов человека с целью модуляции иммунной терапии, определяем конкретных представителей микрофлоры в качестве благоприятных и неблагоприятныхфакторов в терапии ингибиторами иммунных контрольных точек, определяем ряд ограничений в исследовании микрофлоры и дальнейшие перспективы в этой области.

Еще

Микробиом, иммунотерапия, ингибиторы иммунных контрольных точек, ctla-4, pd-1, pd-l1

Короткий адрес: https://sciup.org/149142256

IDR: 149142256

Список литературы Влияние микробиоты на терапию ингибиторами иммунных контрольных точек

  • Боголюбова А.В., Ефимов Г.А., Друцкая М.С. и др. Иммунотерапия опухолей, основанная на блокировке иммунологических контрольных «точек» («чекпойнтов»). Медицинская иммунология. 2015. Т. 17. № 5. С. 395-406. DOI: 10.15789/1563-0625-2015-5-395-406.
  • Гостев В.В., Сидоренко С.В. Бактериальные биопленки и инфекции. Журнал инфектологии. 2014. Т. 2. № 3. С. 4-15. DOI: 10.22625/2072-6732-2010-2-3-4-15.
  • Кадагидзе З.Г., Черткова А.И., Заботина Т.Н. и др. CTLA-4, PD-1/PD-L1 негативные регуляторы Т-клеточного иммунитета в терапии рака яичников. Онкогинекология. 2019. Т. 2. № 30. С. 4. DOI: 10.52313/22278710-2019-2-4.
  • Мансорунов Д.Ж., Алимов А. А., Апанович Н. В. и др. Иммунотерапия рака желудка. Российский биотерапевтический журнал. 2019. Т. 18. № 4. С. 6-16. DOI: 10.17650/1726-9784-2019-18-4-06-16.
  • Моисеенко Ф.В., Югай С.В., Волков Н.М. Микробиом и его роль в онкологии. Практическая онкология. 2020. Т. 21. № 1. С. 11-20. DOI: 10.31917/2101011.
  • Набережнов Д.С., Морозов А.А., Фридман М.В. и др. Система pd-1/pd-l1 при иммунотерапии рака почки. Часть 1. Сигнальный путь pd-1/pd-l1, его роль в иммунной системе и иммунотерапии. Часть 1. Медицинский алфавит. 2018. Т. 2. № 29. С. 22-31.
  • Сухина М. А., Лягина И. А., Сафин А. Л. и др. Роль кишечной микробиоты в колоректальном канцерогенезе (обзор литературы). Колопроктология. 2021. Т. 20. № 1. С. 68-76. DOI: 10.33878/2073-7556-2021-20-1-68-76.
  • Abbott M., Ustoyev Y. Cancer and the immune system: the history and background of immunotherapy. Seminars in oncology nursing. WB Saunders, 2019. V. 35. No. 5. Article ID 150923. DOI: 10.1016/j.soncn.2019.08.002.
  • Andrews M.C., Duong C.P.M., Gopalakrishnan V., et al. Gut microbiota signatures are associated with toxicity to combined CTLA-4 and PD-1 blockade. Nat Med. 2021. V. 27. No. 8. P. 1432-1441. DOI: 10.1038/s41591-021-01406-6.
  • Bagchi S., Yuan R., Engleman E.G. Immune checkpoint inhibitors for the treatment of cancer: clinical impact and mechanisms of response and resistance. Annu Rev Pathol. 2021. V. 16. P. 223-249. DOI: 10.1146/annurev-pathol-042020-042741.
  • Baruch E.N., Youngster I., Ben-Betzalel G., et al. Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. Science. 2021. V. 371. No. 6529. P. 602-609. DOI: 10.1126/science.abb592.
  • Botticelli A., Vernocchi P., Marini F., et al. Gut metabolomics profiling of non-small cell lung cancer (NSCLC) patients under immunotherapy treatment. J Transl Med. 2020. V. 18. No. 1. P. 1-10. DOI: 10.1186/s12967-020-02231-0.
  • Canale F. P., Basso C., Antonini G., et al. Metabolic modulation of tumours with engineered bacteria for immunotherapy. Nature. 2021. V. 598. No. 7882. P. 662-666 DOI: 10.1038/s41586-021-04003-2.
  • Chaput N., Lepage P., Coutzac C., et al. Baseline gut microbiota predicts clinical response and colitis in metastatic melanoma patients treated with ipilimumab.Ann Oncol. 2017. V. 28. No. 6. P. 1368-1379. DOI: 10.1093/annonc/mdx108.
  • Coutzac C., Jouniaux J.M., Paci A., et al. Systemic short chain fatty acids limit antitumor effect of CTLA-4 blockade in hosts with cancer. Nat Commun. 2020. V. 11. No. 1. P. 1-13. DOI:10.1038/s41467-020-16079-x.
  • Cramer P., Bresalier R.S. Gastrointestinal and hepatic complications of immune checkpoint inhibitors. Curr Gastroenterol Rep. 2017. V. 19. No. 1. Article ID 3. DOI: 10.1007/s11894-017-0540-6.
  • Dammeijer F., Gulijk M., Mulder E.E., et al. The PD-1/PD-L1-checkpoint restrains T cell immunity in tumor-draining lymph nodes. Cancer Cell. 2020. V. 38. No. 5. P. 685-700. e8. DOI: 10.1016/j.ccell.2020.09.001.
  • Davar D., Dzutsev A.K., McCulloch J.A., et al. Fecal microbiota transplant overcomes resistance to anti–PD-1 therapy in melanoma patients. Science. 2021. V. 371. No. 6529. P. 595-602. DOI: 10.1126/science.abf33.
  • David L., Maurice C., Carmody R., et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014. V. 505. No. 7484. P. 559-563. DOI: 10.1038/nature12820.
  • Derosa L., Routy B., Thomas A.M., et al. Intestinal Akkermansia muciniphila predicts clinical response to PD-1 blockade in patients with advanced non-small-cell lung cancer. Nat Med. 2022. V. 28. No. 2. P. 315-324. DOI: 10.1038/s41591-021-01655-5.
  • Derosa L., Hellmann M.D., Spaziano M., et al. Negative association of antibiotics on clinical activity of immune checkpoint inhibitors in patients with advanced renal cell and non-small-cell lung cancer. Ann Oncol. 2018. V. 29. No. 6. P. 1437-1444. DOI: 10.1093/annonc/mdy103.
  • Dethlefsen L., Relman D.A. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci U S A. 2011. V. 108. Suppl. 1. P. 4554-4561. DOI: 10.1073/pnas.1000087107.
  • Dubin K., Callahan M., Ren B., et al. Intestinal microbiome analyses identify melanoma patients at risk for checkpoint-blockade-induced colitis. Nat Commun. 2016. V. 7. No. 1. P. 1-8. DOI: 10.1038/ncomms10391.
  • Frankel A.E., Coughlin L.A., Kim J., et al. Metagenomic shotgun sequencing and unbiased metabolomic profiling identify specific human gut microbiota and metabolites associated with immune checkpoint therapy efficacy in melanoma patients. Neoplasia. 2017. V. 19. No. 10. P. 848-855. DOI: 10.1016/j.neo.2017.08.004.
  • Fuentes-Antrás J., Provencio M., Díaz-Rubio E. Hyperprogression as a distinct outcome after immunotherapy. Cancer Treat Rev. 2018. V. 70. P. 16-21. DOI: 10.1016/j.ctrv.2018.07.006.
  • Gagnaire A., Nadel B., Raoult D., et al. Collateral damage: insights into bacterial mechanisms that predispose host cells to cancer. Nat Rev Microbiol. 2017. V. 15. No. 2. P. 109-128. DOI: 10.1038/nrmicro.2016.171.
  • Galluzzi L., Humeau J., Buqué A., et al. Immunostimulation with chemotherapy in the era of immune checkpoint inhibitors. Nat Rev Clin Oncol. 2020. V. 17. No. 12. P. 725-741. DOI: 10.1038/s41571-020-0413-z.
  • Geiger R., Rieckmann J.C., Wolf T., et al. L-arginine modulates T cell metabolism and enhances survival and anti-tumor activity. Cell. 2016. V. 167. No. 3. P. 829-842. e13. DOI: 10.1016/j.cell.2016.09.031.
  • Gopalakrishnan V., Spencer C.N, Nezi L., et al. Gut microbiome modulates response to anti–PD-1 immunotherapy in melanoma patients. Science. 2018. V. 359. No. 6371. P. 97-103. DOI: 10.1126/science.aan4236.
  • Ha D., Tanaka A., Kibayashi T., et al. Differential control of human Treg and effector T cells in tumor immunity by Fc-engineered anti–CTLA-4 antibody. Proc Natl Acad Sci U S A. 2019. V. 116. No. 2. P. 609-618. DOI: 10.1073/pnas.1812186116.
  • Hemshekhar M., Santhosh M. S., Kemparaju K., et al. Emerging roles of anacardic acid and its derivatives: a pharmacological overview. Basic Clin Pharmacol Toxico. 2012. V. 110. No. 2. P. 122-132. DOI: 10.1111/j.1742-7843.2011.00833.x.
  • Hodi F.S., O'Day S.J., McDermott D.F., et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010. V. 363. No. 8. P. 711-723. DOI: 10.1056/NEJMoa1003466.
  • Hodi F.S., Chiarion-Sileni V., Gonzalez R., et al. Nivolumab plus ipilimumab or nivolumab alone versus ipilimumab alone in advanced melanoma (CheckMate 067): 4-year outcomes of a multicentre, randomised, phase 3 trial. Lancet Oncol. 2018. V. 19. No. 11. P. 1480-1492. DOI: 10.1016/S1470-2045(18)30700-9.
  • Hollands A., Corriden R., Gysleret G., al. Natural product anacardic acid from cashew nut shells stimulates neutrophil extracellular trap production and bactericidal activity. J Bioll Chem. 2016. V. 291. No. 27. P. 13964-13973. DOI: 10.1074/jbc.M115.695866.
  • Hou A.J., Chen L.C., Chen Y.Y. Navigating CAR-T cells through the solid-tumour microenvironment. Nat Rev Drug Discov. 2021. V. 20. No. 7. P. 531-550. DOI: 10.1038/s41573-021-00189-2.
  • Jenkins R.W., Barbie D.A., Flaherty K.T. Mechanisms of resistance to immune checkpoint inhibitors. Br J Cancer. 2018. V. 118. No. 1. P. 9-16. DOI: 10.1038/bjc.2017.434.
  • Jernberg C., Löfmark S., Edlund C., et al. Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J. 2007. V 1. No. 1. P. 56-66. DOI: 10.1038/ismej.2007.3.
  • Jin Y., Dong H., Xia L., et al. The diversity of gut microbiome is associated with favorable responses to anti–programmed death 1 immunotherapy in Chinese patients with NSCLC. J Thorac Oncol. 2019. V. 14. No. 8. P. 1378-1389. DOI: 10.1016/j.jtho.2019.04.007.
  • Knight R., Callewaert C., Marotz C., et al. The microbiome and human biology. Annu Rev Genomics Hum Genet. 2017. V. 18. P. 65-86. DOI: 10.1146/annurev-genom-083115-022438.
  • Larkin J., Chiarion-Sileni V., Gonzalez R., et al. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med. 2019. V. 381. No. 16. P. 1535-1546. DOI: 10.1056/NEJMoa1910836.
  • Latchman Y., Wood C., Chernova T., et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol. 2001. V. 2. No. 3. P. 261-268. DOI: 10.1038/85330.
  • Lee L, Gupta M, Sahasranaman S. Immune Checkpoint inhibitors: An introduction to the next‐generation cancer immunotherapy. J Clini Pharmacol. 2016. V. 56. No. 2. P. 157-169. DOI: 10.1002/jcph.591.
  • Li S.M. The Biological Function of SHP2 in Human Disease. Mol Biol (Mosk). 2016. V. 50. No. 1. P. 27-33. DOI: 10.7868/S0026898416010110.
  • Linsley P.S., Brady W., Grosmaire L., et al. Binding of the B cell activation antigen B7 to CD28 costimulates T cell proliferation and interleukin 2 mRNA accumulation. J Exp Med. 1991. V. 173. No. 3. P. 721-730. DOI: 10.1084/jem.173.3.721.
  • Matson V., Fessler J., Bao R., et al. The commensal microbiome is associated with anti–PD-1 efficacy in metastatic melanoma patients. Science. 2018. V. 359. No. 6371. P. 104-108. DOI: 10.1126/science.aao3290.
  • Mirzaei R., Mirzaei H., Alikhani M. Y., et al. Bacterial biofilm in colorectal cancer: What is the real mechanism of action? Microb Pathog. 2020. V. 142. Article ID 104052. DOI: 10.1016/j.micpath.2020.104052.
  • Moslehi J.J., Salem J.E., Sosman J.A., et al. Increased reporting of fatal immune checkpoint inhibitor-associated myocarditis. Lancet. 2018. V. 391. No. 10124. P. 933. DOI: 10.1016/S0140-6736(18)30533-6.
  • Motzer R.J., Rini B.I., McDermott D.F., et al. Nivolumab plus ipilimumab versus sunitinib in first-line treatment for advanced renal cell carcinoma: extended follow-up of efficacy and safety results from a randomised, controlled, phase 3 trial. Lancet Oncol. 2019. V. 20. No. 10. P. 1370-1385. DOI: 10.1016/S1470-2045(19)30413-9.
  • Motzer R.J., Tannir N.M., McDermott D.F., et al. Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma. N Engl J Med. 2018. V. 378. No. 14. P. 1277-1290. DOI: 10.1056/NEJMoa1712126.
  • Nomura M., Nagatomo R., Doi K., et al. Association of short-chain fatty acids in the gut microbiome with clinical response to treatment with nivolumab or pembrolizumab in patients with solid cancer tumors. JAMA Netw Open. 2020. V. 3. No. 4. Article ID e202895. DOI: 10.1001/jamanetworkopen.2020.2895.
  • Okazaki T., Maeda A., Nishimura H., et al. PD-1 immunoreceptor inhibits B cell receptor-mediated signaling by recruiting src homology 2-domain-containing tyrosine phosphatase 2 to phosphotyrosine. Proc Natl Acad Sci U S A. 2001. V. 98. No. 24. P. 13866-13871. DOI: 10.1073/pnas.231486598.
  • Pagès F., Mlecnik B., Marliot F., et al. International validation of the consensus Immunoscore for the classification of colon cancer: a prognostic and accuracy study. Lancet. 2018. V. 391. No. 10135. P. 2128-2139. DOI: 10.1016/S0140-6736(18)30789-X.
  • Peters B. A., Wilson M., Moran U., et al. Relating the gut metagenome and metatranscriptome to immunotherapy responses in melanoma patients. Genome Med. 2019. V. 11. No. 1. P. 1-14. DOI: 10.1186/s13073-019-0672-4.
  • Robert C., Long G. V., Brady B., et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2015. V. 372. No. 4. P. 320-330. DOI: 10.1056/NEJMoa1412082.
  • Routy B., Le Chateliere E., Derosa L., et al. Gut microbiome influences efficacy of PD-1–based immunotherapy against epithelial tumors. Science. 2018. V. 359. No. 6371. P. 91-97. DOI: 10.1126/science.aan3706.
  • Saâda-Bouzid E., Defaucheux C., Karabajakian A., et al. Hyperprogression during anti-PD-1/PD-L1 therapy in patients with recurrent and/or metastatic head and neck squamous cell carcinoma. Ann Oncol. 2017. V. 28. No. 7. P. 1605-1611. DOI: 10.1093/annonc/mdx178.
  • Sadreddini S., Baradaran B., Aghebati-Maleki A., et al. Immune checkpoint blockade opens a new way to cancer immunotherapy. J Cell Physiol. 2019. V. 234. No. 6. P. 8541-8549. DOI: 10.1002/jcp.27816.
  • Salmaninejad A., Valilou S. F., Shabgah A. G., et al. PD‐1/PD‐L1 pathway: Basic biology and role in cancer immunotherapy. J Cell Physiol. 2019. V. 234. No. 10. P. 16824-16837. DOI: 10.1002/jcp.28358.
  • Sepich-Poore G. D., Zitvogel L., Straussman R., et al. The microbiome and human cancer. Science. 2021. V. 371. No. 6536. Article ID eabc4552. DOI: 10.1126/science.abc4552.
  • Seymour L., Bogaerts J., Perrone A., et al. iRECIST: guidelines for response criteria for use in trials testing immunotherapeutics. Lancet Oncol. 2017. V. 18. No. 3. P. e143-e152. DOI: 10.1016/S1470-2045(17)30074-8.
  • Sharpe A.H., Pauken K.E. The diverse functions of the PD1 inhibitory pathway. Nat Rev Immunol. 2018. V. 18. No 3. P. 153-167. DOI: 10.1038/nri.2017.108.
  • Sheppard K.A., Fitza L.J., Lee J.M., et al. PD-1 inhibits T-cell receptor induced phosphorylation of the ZAP70/CD3zeta signalosome and downstream signaling to PKCtheta. FEBS Lett. 2004. V. 574. No. 1-3. P. 37-41. DOI: 10.1016/j.febslet.2004.07.083.
  • Singh S., Hassan D., Aldawsari H.M., et al. Immune checkpoint inhibitors: a promising anticancer therapy. Drug Discov Today. 2020. V. 25. No. 1. P. 223-229. DOI: 10.1016/j.drudis.2019.11.003.
  • Sivan A., Corrales L., Hubert N., et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti–PD-L1 efficacy. Science. 2015. V. 350. No. 6264. P. 1084-1089. DOI: 10.1126/science.aac4255.
  • Thorburn A.N., Macia L., Mackay C.R. Diet, metabolites, and “western-lifestyle” inflammatory diseases. Immunity. 2014. V. 40. No. 6. P. 833-842. DOI: 10.1016/j.immuni.2014.05.014.
  • Valk E., Leung R., Kang H., et al. T cell receptor-interacting molecule acts as a chaperone to modulate surface expression of the CTLA-4 coreceptor. Immunity. 2006. V. 25. No. 5. P. 807-821. DOI: 10.1016/j.immuni.2006.08.024.
  • Vestby L.K., Grønseth T., Simm R., et al. Bacterial biofilm and its role in the pathogenesis of disease. Antibiotics (Basel). 2020. V. 9. No. 2. Article ID 59. DOI: 10.3390/antibiotics9020059.
  • Vétizou M., Pitt J. M., Daillère R., et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science. 2015. V. 350. No. 6264. P. 1079-1084. DOI: 10.1126/science.aad1329.
  • Vivarelli S., Salemi R., Candido S., et al. Gut microbiota and cancer: from pathogenesis to therapy. Cancers. 2019. V. 11. No. 1. Article ID 38. DOI: 10.3390/cancers11010038.
  • Wang D.Y., Salem J.E., Cohen J.V., et al. Fatal toxic effects associated with immune checkpoint inhibitors: a systematic review and meta-analysis. JAMA Oncol. 2018. V. 4. No. 12. P. 1721-1728. DOI: 10.1001/jamaoncol.2018.3923.
  • Wang Y., Wiesnoski D.H., Helmink B.A., et al. Fecal microbiota transplantation for refractory immune checkpoint inhibitor-associated colitis. Nat Med. 2018. V. 24. No. 12. P. 1804-1808. DOI: 10.1038/s41591-018-0238-9.
  • Weber J., Thompson J. A., Hamid O., et al. A randomized, double-blind, placebo-controlled, phase II study comparing the tolerability and efficacy of ipilimumab administered with or without prophylactic budesonide in patients with unresectable stage III or IV melanoma. Clin Cancer Res. 2009. V. 15. No 17. P. 5591-5598. DOI: 10.1158/1078-0432.CCR-09-1024.
  • Zhang Y., Zhang Z. The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell Mol Immunol. 2020. V. 17. No. 8. P. 807-821. DOI: 10.1038/s41423-020-0488-6.
  • Zheng Y., Wang T., Tu X., et al. Gut microbiome affects the response to anti-PD-1 immunotherapy in patients with hepatocellular carcinoma. J Immunother Cancer. 2019. V. 7. No 1. P. 1-7. DOI: 10.1186/s40425-019-0650-9.
Еще
Статья научная