Влияние режимов низкотемпературной термовлажностной обработки на формы связи влаги в рисо-овощной смеси с гидробионтами

Бесплатный доступ

В отрасли организации питания распространено сочетание риса, овощного сырья: лука и моркови, а также гидробионтов: рыбы, кальмаров, которое позволяет получить блюдо с высокими потребительскими свойствами. В статье исследовано влияние количества вносимой воды на соотношение свободной и связанной влаги в образцах блюд, полученных с применением низкотемпературной термо-влажностной обработки, по сравнению с контролем. Установлено, что для рисо-овощной смеси с кальмаром, добавление воды в количестве, превышающем 12,0 % от общей массы блюда приводит к увеличению массовой доли свободной влаги. Для рисо-овощной смеси с карпом внесение дополнительного количества воды не рекомендуется, поскольку внесение воды даже в количестве 5 % от общей массы блюда приводит к увеличению массовой доли свободной влаги. Полученные данные свидетельствуют о том, что применение низкотемпературной термо-влажностной обработки исследуемых образцов с предварительной вакуумной упаковкой способствует сокращению технологических потерь массы готовой продукции, вследствие сохранения количеств свободной влаги с одновременным увеличением массы связанной влаги, что способствует обеспечению лучшей консистенции готового продукта, увеличению срока хранения и выхода полуфабрикатов.

Еще

Животное сырье, растительное сырье, полуфабрикат, вакуумная упаковка, низкотемпературные режимы тепловой обработки

Короткий адрес: https://sciup.org/14040189

IDR: 14040189

Текст научной статьи Влияние режимов низкотемпературной термовлажностной обработки на формы связи влаги в рисо-овощной смеси с гидробионтами

При приготовлении блюд, как правило, используют различные продукты, обеспечивающие сбалансированный состав готовой продукции по жирам, белкам, углеводам, макро- и микроэлементам. В кулинарии распространено сочетание риса, овощного сырья: лука и моркови, а также гидробионтов: рыбы, кальмаров, которое позволяет получить блюдо с высокими потребительскими свойствами. Данные ингредиенты, в процессе приготовления блюд, могут применяться с различной формой нарезки: целиком, кубиками, соломкой, в виде колец, в тертом виде.

Объект исследования - рисо-овощная смесь с гидробионтами с использованием лука (нарезка кубики 0,5 х 0,5 см), моркови (нарезка соломка 1,5х0,2х0,2 см), риса длиннозерного шлифованного 1 сорта (ГОСТ 6292-93), а также кальмаров или рыбы (нарезка порционными кусочками).

Известно, что предварительная гидратация риса обеспечивает сокращение времени на последующую термо-влажностную обработку. В связи с этим рис подвергали предварительной гидратации при температуре 353 К в течении 30 мин с последующим смешиванием с овощными компонентами блюда в следующих соотношениях: для рисоовощной смеси с кальмаром: рис длиннозерный -58 %, лук - 12 %, кальмар - 30 %; для рисоовощной смеси с рыбой: рис длиннозерный - 60 %, морковь - 6 %, лук - 9 %, рыба - 25 % [3].

В процессе исследований определяли количество влаги, необходимое для достижения требуемой консистенции компонентов смеси, увеличения выхода готовых изделий, при обеспечении максимальных сроков хранения, которые, как известно, в значительной степени определяются количеством свободной влаги в пищевом объекте.

Процесс тепловой обработки компонентов блюда проводили в диапазоне температур 333-373 К, с предварительной вакуумной упаковкой в полимерную пленку, влагосодержание теплоносителя поддерживалось равным 100 %. В образцах продукта контролировали степень кулинарной готовности, которая определялась достижением требуемой консистенции готового продукта.

Изменение состояния влаги в продукте оказывает определенное влияние на физикохимические и органолептические показатели изделий. В связи с этим целью исследований являлось определение влияния режимов данной технологии на изменение форм связи влаги в объектах исследования. Количество влаги изменяли в диапазоне от 0 (контроль) до 15,0 % по массе.

В полученных образцах изучали динамику изменения влажности на влагомере FD-610 «KETT» (Япония) с интервалом 2 мин. Количественные и качественные изменения форм связи влаги анализировали на основании полученных графических зависимостей обезвоживания и скорости обезвоживания образцов блюд с кальмаром (рисунки 1,3) и рыбой (рисунки 2,4).

Исходя из анализа представленных зависимостей, следует, что продолжительность процесса обезвоживания рисо-овощных смесей с гидробионтами возрастает при добавлении воды и составляет: для рисо-овощной смеси с кальмаром: 135 (при 373 К) - 145 мин (при 333 К) и 142-145 (при 373 К) - 153-157 мин (при 333 К); для рисоовощной смеси с карпом: 130 (при 373 К) -140 мин (при 333 К) и 135-138 (при 373 К) - 147-150 мин (при 333 К).

а

б

в

Рисунок 1. Графические зависимости обезвоживания образцов рисо-овощных смесей с кальмаром

(а - без добавления воды; б - с добавлением воды (12,5 %); в - с добавлением воды (15,0 %)) обработанных при различных температурных режимах: 1 - 333 К, 2 - 373 К

аб

Рисунок. 2 Графические зависимости обезвоживания образцов рисо-овощных смесей с карпом

(а - без добавления воды; б - с добавлением воды (5,0 %); в - с добавлением воды (10,0 %)) обработанных при различных температурных режимах: 1 - 333 К, 2 - 373 К

При анализе графических зависимостей (рисунки 3, 4) было выявлено, что имеют место три стадии процесса обезвоживания: возрастающей (прогрев), постоянной и убывающей скоростей процесса. Это свидетельствует о наличии влаги в продукте в различных формах: период постоянной скорости обезвоживания соответствует процессу удаления свободной влаги, период убывающей скорости - процессу удаления связанной формы влаги. Было установлено, что температура термовлажностной обработки рисо-овощных смесей с гидробионтами, а также количество вносимой воды оказывают существенное влияние на переход свободной влаги в связанное состояние. Скорость обезвоживания меняется в следующих диапазонах: для рисо-овощной смеси с кальмаром: от

0,90 до 1,22 г/мин (333 К; 373 К) - для образцов блюд, приготовленных без добавления воды; от 0,95 до 1,53 г/мин (333 К; 373 К) - для образцов блюд, приготовленных с добавлением воды в различных пропорциях; для рисо-овощной смеси с карпом: от 0,84 до 1,16 г/мин (333 К; 373 К) - для образцов блюд, приготовленных без добавления воды; от 0,86 до 1,39 г/мин (333 К; 373 К) - для образцов блюд, приготовленных с добавлением воды в различных пропорциях.

Рисунок 3. Графические зависимости скорости обезвоживания образцов рисо-овощных смесей с кальмаром (а - без добавления воды; б - с добавлением воды (12,5 %); в - с добавлением воды (15,0 %)) обработанных при различных температурных режимах: 1 - 333 К, 2 - 373 К

Исходя из анализа влияния количества вносимой воды на соотношение свободной и связанной влаги в образцах, по сравнению с контролем, установлено, что для рисо-овощной смеси с кальмаром добавление воды в количестве, превышающем 12,0 % от общей массы блюда, приводит к увеличению массовой доли свободной влаги. Для рисо-овощной смеси с карпом внесение дополнительного количества воды не рекомендуется, поскольку внесение воды даже в количестве 5 % от общей массы блюда приводит к увеличению массовой доли свободной влаги.

Также следует отметить, что дальнейшее увеличение количества воды в рецептуре, перед термической обработкой, ведет к снижению органолептических показателей и сокращению продолжительности срока хранения рисо-овощных смесей с гидробионтами.

Также было исследовано влияние режимов данной технологии на формы связи влаги в объектах исследования на примере гидробионтов. Изменение состояния влаги в продукте оказывает определенное влияние на физикохимические, органолептические показатели изделий, их хранимоспособность.

Рисунок 4. Графические зависимости скорости обезвоживания образцов рисо-овощных смесей с карпом (а - без добавления воды; б - с добавлением воды (5,0 %); в - с добавлением воды (10,0 %)) обработанных при различных температурных режимах: 1 - 333 К, 2 - 373 К

Было установлено, что температура термовлажностной обработки исследуемых образцов, а также предварительная вакуумная упаковка оказывает существенное влияние на переход свободной влаги в связанное состояние. Исходя из анализа представленных зависимостей (рисунки 5, 6), следует, что продолжительность процесса сушки образцов гидробионтов, обработанных в упаковке, имеет меньшие численные значения по сравнению с образцами, обработанными традиционным способом. Продолжительность процесса сушки для упакованных образцов составляет: 63 (при 373 К) - 68 мин (при 333 К) - для образцов кальмара; 60 (при 373 К) - 65 мин (при 333 К) - для образцов карпа. Продолжительность процесса сушки для образцов, обработанных традиционным способом, составляет: 60 мин - для образцов кальмара; 55 мин - для образцов карпа.

аб

Рисунок 5. Графические зависимости обезвоживания образцов (а - кальмара; б - карпа) обработанных при различных температурных режимах: 1 - 333 К,2 - 373 К, 3 - обработка традиционным способом

Различие в значениях продолжительности процесса испарения осмотически и иммобилизо-ванно связанной влаги упакованных образцов и образцов, обработанных традиционным способом, объясняется различием в значениях влагосодержания, достигнутых по истечении тепловой обработки, которые определяют величины технологи

Рисунок 6. Графические зависимости скорости обезвоживания образцов (а - кальмара; б - карпа) обработанных при различных температурных режимах: 1 -333 К,2 -373 К, 3 - обработка традиционным способом

ческих потерь. Потери массы исследуемых упакованных образцов зависят от режимных параметров тепловой обработки и составляют: 13,5.19,5 % -для образцов кальмара; 9,5 .20,0 % - для образцов карпа. Потери массы при обработке традицион-

При анализе графических зависимостей было выявлено, что имеют место три стадии процесса: возрастающей (прогрев), постоянной и убывающей скоростей испарения. Это свидетельствует о наличии влаги в продукте в различных формах: период постоянной скорости обезвоживания соответствует процессу удаления осмотически и иммобилизованно связанной влаги, период убывающей скорости - процессу удаления химически связанной влаги.

Было установлено, что наличие полимерной упаковки, а также характеристики теплоносителя в рабочей камере аппарата оказывают существенное влияние на переход свободной влаги в связанное состояние. Скорость сушки меняется в следующих диапазонах: от 1,15 до 1,60 г/мин (333 К; 373 К) - для образцов кальмара; от 1,03 до 1,46 г/мин (333 К; 373 К) - для образцов карпа. При этом скорость процесса сушки при обработке традиционным способом составляет 2,02 г/мин - для образцов кальмара; 1,85 г/мин - для образцов карпа.

Из анализа полученных данных следует, что скорость процесса сушки упакованных образцов ниже соответствующих значений, достигаемых при обработке традиционным способом: в 1,26.1,75 раза - для образцов кальмара; в 1,26.1,79 раза - для образцов карпа.

На основании проведенных исследований предлагаются следующие рецептурнотехнологические схемы производства рисоовощных смесей с гидробионтами (рисунок 7).

а

Рисунок 7. Рецептурно-технологическая схема производства рисо-овощных смесей с гидробионтами : а – с кальмаром; б – с карпом

б

Приготовленные по данной технологии рисо-овощные смеси с гидробионтами сохраняются при Т= 293-295 К в течении 5-7 суток, что позволяет предложить их для питания в специальных (полевых) условиях .

Полученные данные свидетельствуют о том, что применение низкотемпературной термовлажностной обработки исследуемых образцов с

Статья научная