V.M. Miklyukov: from dimension 8 to nonassociative algebras
Автор: Tkachev Vladimir Gennadjevich
Журнал: Математическая физика и компьютерное моделирование @mpcm-jvolsu
Рубрика: Математика и механика к 75-летию проф. В.М. Миклюкова. Часть I
Статья в выпуске: 2 т.22, 2019 года.
Бесплатный доступ
In this short survey we give a background and explain some recent developments in algebraic minimal cones and nonassociative algebras. A part of this paper is recollections of my collaboration with my teacher, PhD supervisor and a colleague, Vladimir Miklyukov on minimal surface theory that motivated the present research.
Algebraic minimal cones, nonassociative algebras, hsiang algebras, minimal surface, bernstein's problem
Короткий адрес: https://sciup.org/149129857
IDR: 149129857 | DOI: 10.15688/mpcm.jvolsu.2019.2.3
Список литературы V.M. Miklyukov: from dimension 8 to nonassociative algebras
- Miklyukov V.M. Dve teoremy o granichnykh svoystvakh minimalnykh poverkhnostey v neparametricheskoy forme [Two Theorems on Boundary Properties of Minimal Surfaces in Nonparametric Form]. Mat. zametki [Mathematical Notes], 1977, vol. 21, no. 4, pp. 551-556.
- Miklyukov V.M. O konformnom tipe poverkhnostey, teoreme Liuvillya i teoreme Bernshteyna [Conformal Type of Surfaces, Liouville's Theorem and Bernstein's Theorem]. Dokl. AN SSSR [Doklady Mathematics], 1978, vol. 242, no. 3, pp. 537-540.
- Miklyukov V.M. Ob odnom novom podkhode k teoreme Bernshteyna i blizkim voprosam uravneniy tipa minimalnoy poverkhnosti [A New Approach to the Bernstein Theorem and to Related Questions of Equations of Minimal Surface Type]. Matem. sb [Mathematics of the USSR-Sbornik], 1979, vol. 108 (150), no. 2, pp. 268-289.
- Miklyukov V.M. O nekotorykh svoystvakh trubchatykh minimalnykh poverkhnostey v Rn [Some Properties of Tubular Minimal Surfaces In Rn]. Dokl. AN SSSR [Doklady Mathematics], 1979, vol. 247, no. 3, pp. 549-552.
- Miklyukov V.M. Ob asimptoticheskikh svoystvakh subresheniy kvazilineynykh uravneniy ellipticheskogo tipa i otobrazheniy s ogranichennym iskazheniem [Asymptotic Properties of Subsolutions of Quasilinear Equations of Elliptic Type and Mappings with Bounded Distortion]. Matem. sb [Mathematics of the USSR-Sbornik], 1980, vol. 111 (153), no. 1, pp. 42-66.
- Miklyukov V.M., Tkachev V.G. O stroenii v tselom vneshne polnykh minimalnykh poverkhnostey v R3 [The Structure in the Large of Externally Complete Minimal Surfaces in R3]. Izvestiya vuzov. Matematika [Russian Mathematics], 1987, no. 7, pp. 30-36.
- Sergienko V.V., Tkachev V.G. Dvazhdyperiodicheskie maksimalnye poverkhnosti s osobennostyami [Doubly Periodic Maximal Surfaces with Singularities]. Matematicheskie trudy [Siberian Advances in Mathematics], 2002, vol. 12, no. 1, pp. 77-91.
- Albert A.A. Non-associative algebras. I. Fundamental concepts and isotopy. Annals of Mathematics. Second Series, 1942, vol. 43, pp. 685-707.
- DOI: 10.2307/1968960
- Allison B.N., Faulkner J.R. A Cayley - Dickson process for a class of structurable algebras. Trans. Amer. Math. Soc., 1984, vol. 283, no. 1, pp. 185-210.
- Burago Yu.D., Zalgaller V.A. Geometric inequalities. Berlin, Springer-Verlag, 1988. xiv+334 p.
- DOI: 10.1007/978-3-662-07441-1
- Caffarelli L., Hardt R., Simon L. Minimal surfaces with isolated singularities. Manuscripta Math., 1984, vol. 48, no. 1-3, pp. 1-18.
- Cartan E´. Familles de surfaces isoparame´triques dans les espaces a` courbure constante. Ann. Mat. Pura Appl., 1938, vol. 17, no. 1, pp. 177-191.
- DOI: 10.1007/BF02410700
- Cecil Th.E. Lie sphere geometry. New York, Springer, 2008. xii+208 p.
- Faraut J., Kora´nyi A. Analysis on symmetric cones. Oxford, Oxford Sci. Publ., 1994. xii+382 p.
- Fox D.J.F. The commutative nonassociative algebra of metric curvature tensors. URL: https://arxiv.org/abs/1901.04012.
- Gustafsson B. Exponential transforms, resultants and moments. Harmonic and complex analysis and its applications. Trends in Mathematics. Cham, Birkha¨user, 2014, pp. 287-323.
- DOI: 10.1007/978-3-319-01806-5_6
- Hall J.I., Rehren F., Shpectorov S. Primitive axial algebras of Jordan type. J. Algebra, 2015, vol. 437, pp. 79-115.
- Hall J.I., Rehren F., Shpectorov S. Universal axial algebras and a theorem of Sakuma. J. Algebra, 2015, vol. 421, pp. 394-424.
- Hall J.I., Segev Y., Shpectorov S. Miyamoto involutions in axial algebras of Jordan type half. Israel J. Math., 2018, vol. 223, no. 1, pp. 261-308. 10.1007/s11856- 017-1615-7.
- DOI: 10.1007/s11856-017-1615-7
- Harvey R., Lawson Jr.H.B. Calibrated geometries. Acta Math., 1982, vol. 148, pp. 47- 157.
- DOI: 10.1007/BF02392726
- Hsiang W.-Y. Remarks on closed minimal submanifolds in the standard Riemannian m-sphere. J. Differential Geometry, 1967, vol. 1, pp. 257-267.
- Ivanov A.A. The Monster group and Majorana involutions. Cambridge, Cambridge Univ. Press, 2009. xiv+252 p.
- Ivanov A.A. The Future of Majorana Theory. Group Theory and Computation. Singapore, Springer, 2018, pp. 107-118. 10.1007/978-981-13-2047- 7_6.
- DOI: 10.1007/978-981-13-2047-7_6
- Jordan P., von Neumann J., Wigner E. On an algebraic generalization of the quantum mechanical formalism. Ann. of Math., 1934, vol. 35, no. 1, pp. 29-64.
- Krasnov Ya., Tkachev V.G. Variety of idempotents in nonassociative algebras. Topics in Clifford Analysis. A Special Volume in Honor of Wolfgang Spro¨ssig. Trends Math. URL: https://arxiv.org/abs/1801.00617.
- McCrimmon K. A taste of Jordan algebras. New York, Springer-Verlag, 2004. xxvi+562 p.
- Meeks III W.H., Rosenberg H. The uniqueness of the helicoid. Ann. of Math. (2), 2005, vol. 161, no. 2, pp. 727-758.
- DOI: 10.4007/annals.2005.161.727
- Miklyukov V., Tkachev V. Denjoy - Ahlfors theorem for harmonic functions on Riemannian manifolds and external structure of minimal surfaces. Comm. Anal. Geom., 1996, vol. 4, no. 4, pp. 547-587.
- DOI: 10.4310/CAG.1996.v4.n4.a2
- Milnor J. On manifolds homeomorphic to the 7-sphere. Ann. of Math., 1956, vol. 64, pp. 399-405.
- Miranda M. Recollections on a conjecture in mathematics. Mat. Contemp., 2008, vol. 35, pp. 143-150.
- Nadirashvili N., Tkachev V.G., Vla˘dut¸ S. A non-classical solution to a Hessian equation from Cartan isoparametric cubic. Adv. Math., 2012, vol. 231, no. 3-4, pp. 1589-1597.
- DOI: 10.1016/j.aim.2012.07.005
- Nadirashvili N., Tkachev V.G., Vla˘dut¸ S. Nonlinear elliptic equations and nonassociative algebras. Providence, RI, AMS, 2014. viii+240 p.
- Nadirashvili N., Vla˘dut¸ S. Nonclassical solutions of fully nonlinear elliptic equations. Geom. Funct. Anal., 2007, vol. 17, no. 4, pp. 1283-1296. 10.1007/s00039- 007-0626-7.
- DOI: 10.1007/s00039-007-0626-7
- Nadirashvili N., Vla˘dut¸ S. Singular viscosity solutions to fully nonlinear elliptic equations. J. Math. Pures Appl. (9), 2008, vol. 89, no. 2, pp. 107-113.
- DOI: 10.1016/j.matpur.2007.10.004
- Nadirashvili N., Vla˘dut¸ S. Singular solutions of Hessian fully nonlinear elliptic equations. Adv. Math., 2011, vol. 228, iss. 3, pp. 1718-1741.
- DOI: 10.1016/j.aim.2011.06.030
- Nadirashvili N., Vla˘dut¸ S. Singular solutions to conformal Hessian equations. Chin. Ann. Math. Ser. B, 2017, vol. 38, no. 2, pp. 591-600.
- DOI: 10.1007/s11401-017-1085-6
- Nourigat M., Varro R. E' tude des 𝜔-PI alge'bres commutatives de degre' 4: III. Alge'bres barycentriques invariantes par game'tisation. Comm. Algebra, 2013, vol. 41, no. 8, pp. 2825- 2851.
- DOI: 10.1080/00927872.2012.665532
- Peirce B. Linear Associative Algebra. Amer. J. Math., 1881, vol. 4, no. 1-4, pp. 97-229.
- DOI: 10.2307/2369153
- Peng C.K., Xiao L. On the classification of cubic minimal cones, (in Chinese). J. of Grad. School, 1993, vol. 10, no. 1, pp. 1-19.
- Ranicki A. Eight in algebra, topology and mathematical physics. URL: https://www.maths.ed.ac.uk/ v1ranick/eight.htm.
- Rehren F. Generalised dihedral subalgebras from the Monster. Trans. Amer. Math. Soc, 2017, vol. 369, no. 10, pp. 6953-6986.
- DOI: 10.1090/tran/6866
- Schafer R.D. An introduction to nonassociative algebras. New York, Academic Press, 1966. x+166 p.
- Sergienko V.V., Tkachev V.G. Entire one-periodic maximal surfaces. The Mansfield- Volgograd Journal. Mansfield, Mansfield University of Pennsylvania, 2000, pp. 148- 156.
- Shapiro D.B. Compositions of quadratic forms. Berlin, Walter de Gruyter & Co., 2000. xiv+417 p.
- Simon L. The minimal surface equation. Geometry, V. Encyclopaedia Math. Sci. Berlin, Springer, 1997, vol. 90, pp. 239-272. 10.1007/978-3-662-03484- 2_5.
- DOI: 10.1007/978-3-662-03484-2_5
- Smale N. Minimal hypersurfaces with many isolated singularities. Ann. of Math., 1989, vol. 130, no. 3, pp. 603-642.
- Solomon B. The harmonic analysis of cubic isoparametric minimal hypersurfaces. II. Dimensions 12 and 24. Amer. J. Math., 1990, vol. 112, no. 2, pp. 205-241.
- DOI: 10.2307/2374714
- Tkachev V.G. Disjoint minimal graphs. Ann. Global Anal. Geom., 2009, vol. 35, no. 2, pp. 139-155.
- Tkachev V.G. A generalization of Cartan's theorem on isoparametric cubics. Proc. Amer. Math. Soc., 2010, vol. 138, no. 8, pp. 2889-2895. 10.1090/S0002-9939- 10-10385-2.
- DOI: 10.1090/S0002-9939-10-10385-2
- Tkachev V.G. Minimal cubic cones via Clifford algebras. Complex Anal. Oper. Theory, 2010, vol. 4, no. 3, pp. 685-700.
- Tkachev V.G. On a classification of minimal cubic cones in R4. URL: http://arxiv.org/abs/1009.5409.
- Tkachev V.G. A Jordan algebra approach to the cubic eiconal equation. J. of Algebra, 2014, vol. 419, pp. 34-51.
- V.G. Tkachev. Four-fold periodic minimal hypersurfaces in R4. A lecture on "Variational problems and Geometric PDE's", Granada, 2015
- V.G. Tkachev. Hsiang algebras and cubic minimal cones. In progress, unpublished manuscript, 2016. 140 p.
- Tkachev V.G. A correction of the decomposability result in a paper by Meyer - Neutsch. J. Algebra, 2018, vol. 504, pp. 432-439.
- Tkachev V.G. On an extremal property of Jordan algebras of Clifford type. Comm. Algebra, 2018, vol. 46, no. 12, pp. 1-10.
- Tkachev V.G. Spectral properties of nonassociative algebras and breaking regularity for nonlinear elliptic type PDEs. Algebra i Analysis, 2019, vol. 31, no. 2, pp. 51-74.
- Tkachev V.G. The universality of one half in commutative nonassociative algebras with identities. URL: https://arxiv.org/abs/1808.03808.