Вспомогательные репродуктивные технологии: история становления и роль в развитии генетических технологий в скотоводстве (обзор)

Бесплатный доступ

Разработка технологий активного трансгенеза сделала возможным внесение направленных изменений (геномное редактирование, genome editing, GE) в геном сельскохозяйственных животных с относительно высокой результативностью (обзоры S.Y. Yum с соавт., 2018; A.L. Van Eenennaam, 2019; N.A. Zinovieva с соавт., 2019). Однако эффективное совершенствование систем производства продукции животноводства на основе GE-технологий требует разработки комплексного подхода, основанного на использовании методов биотехнологии, популяционной генетики, геномики количественных признаков и вспомогательных репродуктивных технологий (assisted reproductive technology, ART) (C. Rexroad с соавт., 2019). Развитие ART, включая получение генеративного материала для геномного редактирования от животных с желаемыми генетическими характеристиками, эффективное получение GE-потомства и как можно более раннее его тиражирование, - неотъемлемая составляющая успешного развития и внедрения геномных технологий в скотоводстве (A.L. Van Eenennaam, 2019). В настоящем обзоре проведен ретроспективный анализ развития вспомогательных репродуктивных технологий, в том числе искусственного осеменения (R.H. Foote, 2002; R.G. Saacke, 2012; P. Lonergan, 2018), трансплантации эмбрионов (K.J. Betteridge, 2003; R.J. Mapletoft, 2013), производства эмбрионов in vitro (IVP, in vitro production) (L. Ferré с соавт., 2019), прижизненного получения ооцитов (Ovum-Pick-Up) (R. Boni, 2012; M. Qi с соавт., 2013), переноса ядер соматических клеток (C.L. Keefer, 2015; K.R. Bondioli, 2018; A.V. Lopukhov с соавт., 2019). Дана характеристика современного состояния исследований, дискутируются направления совершенствования ART в связи с применением генетических технологий в скотоводстве, включая генное редактирование. Показано, что за более чем 100-летнюю историю достигнут значительный прогресс в развитии вспомогательных репродуктивных технологий у крупного рогатого скота, многие из которых сегодня активно используются в практическом животноводстве (C. Smith, 1988; L. Ferré с соавт., 2019) и стали базисом для разработки эффективных программ генетического совершенствования скота, включая геномную селекцию (P.M. VanRaden с соавт., 2009). Современные приоритеты в исследованиях ориентированы на прогресс в селекции крупного рогатого скота посредством интеграции GE-технологий в программы разведения (C. Rexroad с соавт., 2019; A.L. Van Eenennaam, 2019). Вспомогательные репродуктивные технологии будут играть одну из определяющих ролей в решении этой амбициозной задачи.

Еще

Крупный рогатый скот, вспомогательные репродуктивные технологии, генетические технологии, генное редактирование

Короткий адрес: https://sciup.org/142226291

IDR: 142226291   |   DOI: 10.15389/agrobiology.2020.2.225rus

Список литературы Вспомогательные репродуктивные технологии: история становления и роль в развитии генетических технологий в скотоводстве (обзор)

  • Rexroad C., Vallet J., Matukumalli L.K., Reecy J., Bickhart D., Blackburn H., Boggess M., Cheng H., Clutter A., Cockett N., Ernst C., Fulton J.E., Liu J., Lunney J., Neibergs H., Purcell C., Smith T.P.L., Sonstegard T., Taylor J., Telugu B., Van Eenennaam A., Van Tassell C.P., Wells K. Genome to phenome: improving animal health, production, and well-being - a new USDA blueprint for animal genome research 2018-2027. Frontiers in Genetics, 2019, 10: 327 ( ). DOI: 10.3389/fgene.2019.00327
  • Федеральная научно-техническая программа развития генетических технологий на 2019-2027 годы. Утверждена Постановлением Правительства Российской Федерации от 22 апреля 2019 года № 479.
  • VanRaden P.M., Van Tassell C.P., Wiggans G.R., Sonstegard T.S., Schnabel R.D., Taylor J.F., Schenkel F.S. Invited review: reliability of genomic predictions for North American Holstein bulls. Journal of Dairy Science, 2009, 92(1): 16-24 ( ). DOI: 10.3168/jds.2008-1514
  • Science breakthroughs to advance food and agricultural research by 2030. A consensus study report of the National Academies of Sciences, Engineering and Medicine. The National Academies Press, Washington, DC, 2019 ( ). DOI: 10.17226/25059
  • Yum S.Y., Youn K.Y., Choi W.J., Jang G. Development of genome engineering technologies in cattle: from random to specific. Journal of Animal Science and Biotechnology, 2018, 9: 16 ( ). DOI: 10.1186/s40104-018-0232-6
  • Van Eenennaam A.L. Application of genome editing in farm animals: cattle. Transgenic Research, 2019, 28: 93-100 ( ).
  • DOI: 10.1007/s11248-019-00141-6
  • Zinovieva N.A., Volkova N.A., Bagirov V.A. Genome editing: current state of research and application to animal husbandry. Applied Biochemistry and Microbiology, 2019, 55(7): 711-721 ( ).
  • DOI: 10.1134/S000368381907007X
  • Foote R.H. The history of artificial insemination: selected notes and notables. Journal of Animal Science, 2002, 80(2): 1-10.
  • Saacke R.G. AI: a historical perspective. Proc. of the 24th Technical Conference on Artificial insemination and reproduction. Milwaukee, WI, USA, 2012: 138-150.
  • Lonergan P. Review: Historical and futuristic developments in bovine semen technology. Animal, 2018, 12(S1): s4-s18 ( ).
  • DOI: 10.1017/S175173111800071X
  • Spallanzani L. Experiences pour servir a l'liistoire de la generation des animaux et des plantes. Geneve, 1786.
  • Heape W. The artificial insemination of mammals and subsequent possible fertilisation or impregnation of their ova. Proceedings of the Royal Society of London, 1897, 61(369-377): 52-63 ( ).
  • DOI: 10.1098/rspl.1897.0012
  • Home E. An account of the dissection of an hermaphrodite dog. To which are prefixed, some observations on hermaphrodites in general. By Everard Home, Esq. F. R. S. Philosophical Transactions of the Royal Society, 1799, 89: 157-178. Режим доступа: https://www.jstor.org/stable/107031. Дата обращения 21.04.2020.
  • Millais E. Influence with special reference to that of sire. In: The Dog Owners' Annual for 1894. London, Dean, 1894: 153.
  • Herman H.A. Improving cattle by the millions: NAAB and the development and worldwide application of artificial insemination. University of Missouri Press, Columbia, 1981.
  • Walters E.M., Benson J.D., Woods E.J., Critser J.K. The history of sperm cryopreservation importance of sperm cryopreservation. In: Sperm banking: theory and practice /A.A. Pacey, M.J. Tomlinson (eds.). Cambridge University Press, 2009.
  • Иванов И.И. Искусственное оплодотворение у млекопитающих. Экспериментальное исследование. Архив биологических наук, 1906, 12(4-5): 376-509.
  • Ivanoff E.I. On the use of artificial insemination for zootechnical purposes in Russia. The Journal of Agricultural Science, 1922, 12(3): 244-256 ( ).
  • DOI: 10.1017/s002185960000530x
  • Милованов В.К. Искусственное осеменение сельскохозяйственных животных. М., 1938.
  • Shaffner C.S. Longevity of fowl spermatozoa in frozen condition. Science, 1942, 96(2493): 377 ( ).
  • DOI: 10.1126/science.96.2493.337
  • Соколовская И.И. Может ли замороженная сперма оплодотворять и давать нормальное потомство. Доклады ВАСХНИЛ, 1947, 6: 21-23.
  • Polge C., Smith A.U., Parkes A.S. Revival of spermatozoa after vitrification and dehydration at low temperatures. Nature, 1949, 164: 666 ( ).
  • DOI: 10.1038/164666a0
  • Бернштейн А.Д., Петропавловский В.В. Влияние неэлектролитов на переживание сперматозоидов. Бюллетень экспериментальной биологии и медицины, 1937, 1: 21-25.
  • Polge C. Functional survival of fowl spermatozoa after freezing at -79 °С. Nature, 1951, 167: 949-950 ( ).
  • DOI: 10.1038/167949b0
  • Smith A.U., Polge C. Storage of bull spermatozoa at low temperatures. Veterinary Record, 1950, 62: 115-116.
  • Hess E.A., Teague H.S., Ludwick T.M., Martig R.C. Swine can be bred with frozen semen. Ohio Farm Home Res., 1957, 42: 100
  • Barker C.A.V., Grandier J.C.C. Pregnancy in a mare resulted from frozen epididymal spermatozoa. Can. J. Comp. Med. Vet. Sci., 1957, 21(2): 47-51.
  • Милованов В.К., Соколовская И.И. Крупномасштабная селекция в животноводстве и искусственное осеменение. Вестник сельскохозяйственной науки, 1980, 12: 122-134.
  • Эрнст Л.К., Цалитис А.А. Крупномасштабная селекция в скотоводстве. М., 1982.
  • Garner D.L., Gledhill B.L., Pinkel D., Lake S., Stephenson D., Van Dilla M.A., Johnson L.A. Quantification of the X- and Y-chromosome-bearing spermatozoa of domestic animals by flow cytometry. Biology of Reproduction, 1983, 28(2): 312-321 ( ).
  • DOI: 10.1095/biolreprod28.2.312
  • Seidel G.E. Jr. Update on sexed semen technology in cattle. Animal, 2014, 8(s1): 160-164 ( ).
  • DOI: 10.1017/S1751731114000202
  • Rath D., Barcikowski S., de Graaf S., Garrels W., Grossfeld R., Klein S., Knabe W., Knorr C., Kues W., Meyer H., Michl J., Moench-Tegeder G., Rehbock C., Taylor U., Washausen S. Sex selection of sperm in farm animals: status report and developmental prospects. Reproduction, 2013, 145(1): R15-R30 ( ).
  • DOI: 10.1530/REP-12-0151
  • Pinkel D., Lake S., Gledhill B.L., Van Dilla M.A., Stephenson D., Watchmaker G. High resolution DNA content measurements of mammalian sperm. Cytometry, 1982, 3(1): 1-9 ( ).
  • DOI: 10.1002/cyto.990030103
  • Zinovieva N.A. Haplotypes affecting fertility in Holstein cattle. Sel'skokhozyaistvennaya Biologiya [Agricultural Biology], 2016, 51(4): 423-435 ( ).
  • DOI: 10.15389/agrobiology.2016.4.423eng
  • Betteridge K.J. A history of farm animal embryo transfer and some associated techniques. Animal Reproduction Science, 2003, 79(3-4): 203-244 (
  • DOI: 10.1016/S0378-4320(03)00166-0)
  • Mapletoft R.J. History and perspectives on bovine embryo transfer. Animal Reproduction, 2013, 10(3): 168-173
  • Willett E.L., Black W.G., Casida L.E., Stone W.H., Buckner P.J. Successful transplantation of a fertilized bovine ovum. Science, 1951, 113(2931): 247 ( ).
  • DOI: 10.1126/science.113.2931.247
  • Elsden R.P., Hasler J.F., Seidel G.E. Jr. Non-surgical recovery of bovine eggs. Theriogenology, 1976, 6(5): 523-532 (
  • DOI: 10.1016/0093-691X(76)90120-5)
  • Rowe R.F., Del Campo M.R., Critser J.K., Ginther O.J. Embryo transfer in cattle: nonsurgical transfer. Am. J. Vet. Res., 1980, 41(7): 1024-1028.
  • Smith C. Applications of embryo transfer in animal breeding. Theriogenology, 1988, 29(1): 203-212 (
  • DOI: 10.1016/0093-691X(88)90040-4)
  • Ferré L., Kjelland M., Strøbech L., Hyttel P., Mermillod P., Ross P. Recent advances in bovine in vitro embryo production: reproductive biotechnology history and methods. Animal, 2020, 14(5): 991-1004 ( )
  • DOI: 10.1017/S1751731119002775
  • Эрнст Л.К., Сергеев Н.И. Трансплантация эмбрионов сельскохозяйственных животных. М., 1989.
  • Прокофьев М.И. Регуляция воспроизводства крупного рогатого скота. М., 1989.
  • Brackett B.G., Bousquet D., Boice M.L., Donawick W.J., Evans J.F., Dressel M.A. Normal development following in vitro fertilization in the cow. Biology of Reproduction, 1982, 27(1): 147-158 ( ).
  • DOI: 10.1095/biolreprod27.1.147
  • Goto K., Kajihara Y., Kosaka S., Koba M., Nakanishi Y., Ogawa K. Pregnancies after co-culture of cumulus cells with bovine embryos derived from in-vitro fertilization of in-vitro matured follicular oocytes. Journal of Reproduction and Fertility, 1988, 83(2): 753-758 ( ).
  • DOI: 10.1530/jrf.0.0830753
  • Boni R. Ovum pick-up in cattle: a 25 years retrospective analysis. Animal Reproduction, 2012, 9(3): 362-369.
  • Qi M., Yao Y., Ma H., Wang J., Zhao X., Liu L., Tang X., Zhang L., Zhang S., Sun F. Transvaginal ultrasound guided Ovum Pick-up (OPU) in cattle. Journal of Biomimetics Biomaterials and Tissue Engineering, 2013, 18: 118 ( ).
  • DOI: 10.4172/1662-100X.1000118
  • Kruip T.A.M., Pieterse M.C., van Beneden T.H., Vos P.L., Wurth Y.A., Taverne M.A. A new method for bovine embryo production: a potential alternative to superovulation. Veterinary Record, 1991, 128(9): 208-210 ( ).
  • DOI: 10.1136/vr.128.9.208
  • Bousquet D., Twagiramungu H., Morin N., Brisson C., Carboneau G., Durocher J. In vitro embryo production in the cow: an effective alternative to the conventional embryo production approach. Theriogenology, 1999, 51(1): 59-70 (
  • DOI: 10.1016/S0093-691X(98)00231-3)
  • Pontes J.H.F., Silva K.C.F., Basso A.C., Rigo A.G., Ferreira C.R., Santos G.M.G., Sanches B.V., Porcionato J.P., Vieira P.H., Faifer F.S., Sterza F.A., Schenk J.L., Seneda M.M. Large-scale in vitro embryo production and pregnancy rates from Bos taurus, Bos indicus, and indicus-taurus dairy cows using sexed sperm. Theriogenology, 2010, 74(8): 1349-1355 ( 10).
  • DOI: 10.1016/j.theriogenology.2010.06.004
  • Lambert R.D., Bernard C., Rioux J.E., Béland R., D'Amours D., Montreuil A. Endoscopy in cattle by the paralumbar route: technique for ovarian examination and follicular aspiration. Theriogenology, 1983, 20(2): 149-161 (
  • DOI: 10.1016/0093-691X(83)90210-8)
  • Callesen H., Greve T., Christensen F. Ultrasonically guided aspiration of bovine follicular oocytes. Theriogenology, 1987, 27(1): 217 (
  • DOI: 10.1016/0093-691X(87)90094-X)
  • Pieterse M.C., Kappen K.A., Kruip T.A.M., Taverne M.A.M. Aspiration of bovine oocytes during transvaginal ultrasound scanning of the ovaries. Theriogenology, 1988, 30(4): 751-762 (
  • DOI: 10.1016/0093-691X(88)90310-X)
  • Galli C., Crotti G., Notari C., Turini P., Duchi R., Lazzari G. Embryo production by ovum pick up from live donors. Theriogenology, 2001, 55(6): 1341-1357 (
  • DOI: 10.1016/S0093-691X(01)00486-1)
  • Chastant-Maillard S., Quinton H., Lauffenburger J., Cordonnier-Lefort N., Richard C., Marchal J., Mormede P., Renard J.P. Consequences of transvaginal follicular puncture on well-being in cows. Reproduction, 2003, 125(4): 555-563 ( ).
  • DOI: 10.1530/rep.0.1250555
  • Faber D.C., Molina J.A., Ohlrichs C.O., Vander Zwaag D.F., Ferre L.B. Commercialization of animal biotechnology. Theriogenology, 2003, 59(1): 125-138 (
  • DOI: 10.1016/S0093-691X(02)01264-5)
  • Kruip T.A.M., Boni R., Wurth Y.A., Roelofsen M.W.M., Pieterse M.C. Potential use of ovum pick-up for embryo production and breeding in cattle. Theriogenology, 1994, 42(4): 675-683 (
  • DOI: 10.1016/0093-691X(94)90384-U)
  • Wu B., Zan L., Quan F., Wang H. A novel discipline in embryology - animal embryo breeding. In: New discoveries in embryology /B. Wu (ed.). IntechOpen Limited, London, 2015: Ch. 8 ( ).
  • DOI: 10.5772/61299
  • Chaubal S.A., Ferre L.B., Molina J.A., Faber D.C., Bols P.E., Rezamand P., Tian X., Yang X. Hormonal treatments for increasing the oocyte and embryo production in an OPU-IVP system. Theriogenology, 2007, 67(4): 719-728 ( ).
  • DOI: 10.1016/j.theriogenology.2006.07.022
  • Sendag S., Cetin Y., Alan M., Hadeler K.G., Niemann H. Effects of eCG and FSH on ovarian response, recovery rate and number and quality of oocytes obtained by ovum pick-up in Holstein cows. Animal Reproduction Science, 2008, 106(1-2): 208-214 ( ).
  • DOI: 10.1016/j.anireprosci.2008.01.007
  • Чинаров Р.Ю., Тарадайник Н.П., Тарадайник Т.Е., Сингина Г.Н., Позябин С.В. Сравнительное исследование количественных и качественных показателей результативности трансвагинального извлечения ооцитов коров при использовании и отсутствии гормональной стимуляции. В сб.: Науч. тр. учебно-методической и научно-практической конференции, посвященной 100-летию со дня основания ФГБОУ ВО МГАВМиБ - МВА им. К.И. Скрябина "Актуальные проблемы ветеринарной медицины, зоотехнии и биотехнологии". М., 2019: 377-378.
  • De Roover R., Bols P.E.J., Genicot G., Hanzen Ch. Characterisation of low, medium and high responders following FSH stimulation prior to ultrasound- guided transvaginal oocyte retrieval in cows. Theriogenology, 2005, 63(7): 1902-1913 ( ).
  • DOI: 10.1016/j.theriogenology.2004.08.011
  • Leroy J.L.M.R., Van Soom G., Opsomer G., Goovaerts I.G.F., Bols P.E.J. Reduced fertility in high-yielding dairy cows: Are the oocyte and embryo in danger? Part II. Mechanisms linking nutrition and reduced oocyte and embryo quality in high-yielding dairy cows. Reproduction in Domestic Animals, 2008, 43(5): 623-632 ( ).
  • DOI: 10.1111/j.1439-0531.2007.00961.x
  • Ferreira R.M., Ayres H., Chiaratti M.R., Ferraz M.L., Araújo A.B., Rodrigues C.A., Watanabe Y.F., Vireque A.A., Joaquim D.C., Smith L.C., Meirelles F.V., Baruselli P.S. The low fertility of repeat-breeder cows during summer heat stress is related to a low oocyte competence to develop into blastocysts. Journal of Dairy Science, 2011, 94(5): 2383-2392 ( ).
  • DOI: 10.3168/jds.2010-3904
  • Ferreira R.M., Chiaratti M.R., Macabelli C.H., Rodrigues C.A., Ferraz M.L., Watanabe Y.F., Smith L.C., Meirelles F.V., Baruselli P.S. The infertility of repeat-breeder cows during summer is associated with decreased mitochondrial DNA and increased expression of mitochondrial and apoptotic genes in oocytes. Biology of Reproduction, 2016, 94(66): 1-10 ( ).
  • DOI: 10.1095/biolreprod.115.133017
  • Chaubal S.A., Molina J.A., Ohlrichs C.L., Ferre L.B., Faber D.C., Bols P.E., Riesen J.W., Tian X., Yang X. Comparison of different transvaginal ovum pick-up protocols to optimise oocyte retrieval and embryo production over a 10-week period in cows. Theriogenology, 2006, 65(8): 1631-1648 ( ).
  • DOI: 10.1016/j.theriogenology.2005.07.020
  • Lopes A.S., Martinussen T., Greve T., Callesen H. Effect of days post-partum, breed and ovum pick-up scheme on bovine oocyte recovery and embryo development. Reproduction in Domestic Animals, 2006, 41(3): 196-203 ( ).
  • DOI: 10.1111/j.1439-0531.2006.00683.x
  • Li F., Chen X., Pi W., Liu C., Shi Z. Collection of oocytes through transvaginal ovum pick-up for in vitro embryo production in Nanyang Yellow cattle. Reproduction in Domestic Animals, 2007, 42(6): 666-670 ( ).
  • DOI: 10.1111/j.1439-0531.2006.00842.x
  • Чинаров Р.Ю., Луканина В.А., Сингина Г.Н., Тарадайник Н.П. Результативность получения ооцитов коров при использовании различных временных режимов трансвагинальной пункции фолликулов. Достижения науки и техники АПК, 2020, 34(2): 57-60 ( ).
  • DOI: 10.24411/0235-2451-2020-10212
  • Rizos D., Burke L., Duffy P., Wade M., Mee J.F., O'Farrell K.J., Macsiurtain M., Boland M.P., Lonergan P. Comparisons between nulliparous heifers and cows as oocyte donors for embryo production in vitro. Theriogenology, 2005, 63(3): 939-949 ( ).
  • DOI: 10.1016/j.theriogenology.2004.05.008
  • Takuma T., Sakai S., Ezoe D., Ichimaru H., Jinnouchi T., Kaedei Y., Nagai T., Otoi T. Effects of season and reproductive phase on the quality, quantity and developmental competence of oocytes aspirated Japanese Black cows. Journal of Reproduction and Development, 2010, 56(1): 55-59 ( ).
  • DOI: 10.1262/jrd.09-071h
  • Guerreiro B.M., Batista E.O., Vieira L.M., Sá Filho M.F., Rodrigues C.A., Castro Netto A., Silveira C.R., Bayeux B.M., Dias E.A., Monteiro F.M., Accorsi M., Lopes R.N., Baruselli P.S. Plasma anti-mullerian hormone: an endocrine marker for in vitro embryo production from Bos taurus and Bos indicus donors. Domestic Animal Endocrinology, 2014, 49: 96-104 ( ).
  • DOI: 10.1016/j.domaniend.2014.07.002
  • Gimenes L.U., Ferraz M.L., Fantinato-Neto P., Chiaratti M.R., Mesquita L.G., Sá Filho M.F., Meirelles F.V., Trinca L.A., Rennó F.P., Watanabe Y.F., Baruselli P.S. The interval between the emergence of pharmacologically synchronized ovarian follicular waves and ovum pickup does not significantly affect in vitro embryo production in Bos indicus, Bos taurus, and Bubalus bubalis. Theriogenology, 2015, 83(3): 385-393 ( ).
  • DOI: 10.1016/j.theriogenology.2014.09.030
  • Thibier M. Stabilization of numbers of in vivo collected embryos in cattle but significant increases of in vitro bovine produced embryos in some parts of the world. IETS Embryo Transfer Society Newsletter, 2004, 22: 12-19.
  • Rubin K.C.P., Pontes J.H.F., Nonato-Junior I., Ereno-Junior J.C., Pansard H., Seneda M. Influência do grau de sangue Nelore na produção in vivo de oócitos. Acta Scientiae Veterinariae, 2005, 33: 183.
  • Batista E.O.S., Macedo G.G., Sala R.V., Ortolan M., Sá Filho M.F., Del Valle T.A., Jesus E.F., Lopes R., Rennó F.P., Baruselli P.S. Plasma antimullerian hormone as a predictor of ovarian antral follicular population in Bos indicus (Nelore) and Bos taurus (Holstein) heifers. Reproduction in Domestic Animals, 2014, 49(3): 448-452 ( ).
  • DOI: 10.1111/rda.12304
  • Bols P.E., Leroy J.L., Vanholder T., Van Soom A. A comparison of a mechanical sector and a linear array transducer for ultrasound-guided transvaginal oocyte retrieval (OPU) in the cow. Theriogenology, 2004, 62(5): 906-914 ( ).
  • DOI: 10.1016/j.theriogenology.2003.12.016
  • Ward F.A., Lonergan P., Enright B.P., Boland M.P. Factors affecting recovery and quality of oocytes for bovine embryo production in vitro using ovum pick-up technology. Theriogenology, 2000, 54(3): 433-446 (
  • DOI: 10.1016/s0093-691x(00)00360-5)
  • Manik R.S., Singla S.K., Palta P. Collection of oocytes through transvaginal ultrasound-guided aspiration of follicles in an Indian breed of cattle. Animal Reproduction Science, 2003, 76(3-4): 155-161 (
  • DOI: 10.1016/s0378-4320(02)00241-5)
  • Sasamoto Y., Sakaguchi M., Katagiri S., Yamada Y., Takahashi Y. The effects of twisting and type of aspiration needle on the efficiency of transvaginal ultrasound-guided ovum pick-up in cattle. Journal of Veterinary Medical Science, 2003, 65(10): 1083-1086 ( ).
  • DOI: 10.1292/jvms.65.1083
  • Bols P.E., Van Soom A., Ysebaert M.T., Vandenheede J.M., de Kruif A. Effects of aspiration vacuum and needle diameter on cumulus oocyte complex morphology and developmental capacity of bovine oocytes. Theriogenology, 1996, 45(5): 1001-1014 (
  • DOI: 10.1016/0093-691x(96)00028-3)
  • Bols P.E., Ysebaert M.T., Van Soom A., de Kruif A. Effects of needle tip bevel and aspiration procedure on the morphology and developmental capacity of bovine compact cumulus oocyte complexes. Theriogenology, 1997, 47(6): 1221-1236 (
  • DOI: 10.1016/s0093-691x(97)00102-7)
  • Fayrer-Hosken R.A., Caudle A.B. The laparoscope in follicular oocyte collection and gamete intrafallopian transfer and fertilization (GIFT). Theriogenology, 1991, 36(5): 709-725 (
  • DOI: 10.1016/0093-691x(91)90337-d)
  • Gradela A., Esper C.R., Matos S.P.M., Lanza J.A., Deragon L.A.G., Malheiros R.M. Dominant follicle removal by ultrasound guided transvaginal aspiration and superovulatory response in Nellore cows. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 2000, 52(1): 53-58.
  • Armstrong D.T., Holm P., Irvine B., Petersen B.A., Stubbings R.B., McLean D., Seamark R.F. Pregnancies and live birth from in vitro fertilization of calf oocytes collected by laparoscopic follicular aspiration. Theriogenology, 1992, 38(4): 667-678 (
  • DOI: 10.1016/0093-691x(92)90029-q)
  • Becker F., Kanitz W., Nurnberg G., Kurth J., Spitschak M. Comparison of repeated transvaginal ovum pick up in heifers by ultrasonographic and endoscopic instruments. Theriogenology, 1996, 46(6): 999-1007 (
  • DOI: 10.1016/S0093-691X(96)00264-6)
  • Santl B., Wenigerkind H., Schernthaner W., Mödl J., Stojkovic M., Prelle K., Holtz W., Brem G., Wolf E. Comparison of ultrasound-guided vs laparoscopic transvaginal ovum pick-up (OPU) in Simmental heifers. Theriogenology, 1998, 50(1): 89-100 (
  • DOI: 10.1016/s0093-691x(98)00116-2)
  • Baldassarre H., Currin L., Michalovic L., Bellefleur A.M., Gutierrez K., Mondadori R.G., Glanzner W.G., Schuermann Y., Bohrer R.C., Dicks N., Lopez R., Grand F.-X., Vigneault C., Blondinm P., Gourdon J., Bordignon V. Interval of gonadotropin administration for in vitro embryo production from oocytes collected from Holstein calves between 2 and 6 months of age by repeated laparoscopy. Theriogenology, 2018, 116: 64-70 ( ).
  • DOI: 10.1016/j.theriogenology.2018.05.005
  • Taneja M., Bols P.E., de Velde A.V., Ju J.C., Schreiber D., Tripp M.W., Yang X. Developmental competence of juvenile calf oocytes in vitro and in vivo: influence of donor animal variation and repeated gonadotropin stimulation. Biology of Reproduction, 2000; 62(1): 206-213 ( ).
  • DOI: 10.1095/biolreprod62.1.206
  • Lohuis M.M. Potential benefits of bovine embryo-manipulation technologies to genetic improvement programs. Theriogenology, 1995, 43(1): 51-60 (
  • DOI: 10.1016/0093-691X(94)00016-N)
  • Reichenbach H.D., Wiebke N.H., Modl J., Zhu J., Brem G. Laparoscopy through the vaginal fornix of cows for the repeated aspiration of follicular oocytes. Veterinary Record, 1994, 135(15): 353-356 ( ).
  • DOI: 10.1136/vr.135.15.353
  • Keefer C.L. Artificial cloning of domestic animals. PNAS USA, 2015, 112(29): 8874-8878 ( ).
  • DOI: 10.1073/pnas.1501718112
  • Bondioli K.R. Cloning of livestock by somatic cell nuclear transfer. In: Animal Biotechnology 2 /H. Niemann, C. Wrenzycki (eds.). Springer, Cham, 2018: 1-20 ( ).
  • DOI: 10.1007/978-3-319-92348-2_1
  • Lopukhov A.V., Singina G.N., Zinovieva N.A. Biotechnological bases of the development of cloned pig embryos. Vavilovskii Zhurnal Genetiki i Selektsii =Vavilov Journal of Genetics and Breeding, 2019, 23(5): 527-533 ( ).
  • DOI: 10.18699/VJ19.521
  • Sims M., First N.L. Production of fetuses from totipotent cultured bovine inner cell mass cells. Theriogenology, 1993, 39(1): 313 (
  • DOI: 10.1016/0093-691X(93)90168-5)
  • Vignon X., Chesné P., Le Bourhis D., Heyman Y., Renard J.P. Developmental potential of bovine embryos reconstructed with somatic nuclei from cultured skin and muscle fetal cells. Theriogenology, 1998, 49: 392 (
  • DOI: 10.1016/S0093-691X(98)90745-2)
  • Sermyagin A.A., Belous A.A., Konte A.F., Philipchenko A.A., Ermilov A.N., Yanchukov I.N., Plemyashov K.V., Brem G., Zinovieva N.A. Genomic evaluation of bulls for daughters' milk traits in Russian Black-and-White and Holstein cattle population through the validation procedure. Sel'skokhozyaistvennaya Biologiya (Agricultural Biology), 2017, 52(6): 1148-1156 ( ).
  • DOI: 10.15389/agrobiology.2017.6.1148eng
  • Серов О.Л. Трансгенные животные: фундаментальные и прикладные аспекты. Вавиловский журнал генетики и селекции, 2013, 17(4/2): 1055-1064.
  • Zinovieva N.A., Volkova N.A., Bagirov V.A., Brem G. Transgenic farm animals: the status of research and prospects. Russian Journal of Genetics: Applied Research, 2016, 6(6): 657-668 ( ).
  • DOI: 10.1134/S2079059716060101
  • Gordon J.W., Scangos G.A., Plotkin D.J., Barbosa J.A., Ruddle F.H. Genetic transformation of mouse embryos by microinjection of purified DNA. PNAS USA, 1980, 77(12): 7380-7384 ( ).
  • DOI: 10.1073/pnas.77.12.7380
  • Hammer R., Pursel V., Rexroad J., Wall R.J., Bolt D.J., Ebert K.M., Palmiter R.D., Brinster R.L. Production of transgenic rabbits, sheep and pigs by microinjection. Nature, 1985, 315: 680-683 ( ).
  • DOI: 10.1038/315680a0
  • Brem G., Brenig B., Goodman H.M., Selden R.C., Graf F., Kruff B., Springman K., Hondele J., Meyer J., Winnacker E.-L. Production of transgenic mice, rabbits and pigs by microinjection into pronuclei. Reproduction in Domestic Animals, 1985, 20(4): 251-252 ( ).
  • DOI: 10.1111/j.1439-0531.1985.tb00423.x
  • Krimpenfort P., Rademakers A., Eyestone W., van der Schans A., van den Broek S., Kooiman P., Kootwijk E., Platenburg G., Pieper F., Strijker R., de Boer H. Generation of transgenic dairy cattle using 'in vitro' embryo production. Biotechnology, 1991, 9: 844-847 ( ).
  • DOI: 10.1038/nbt0991-844
  • Wall R.J. Pronuclear microinjection. Cloning and Stem Cells, 2001, 3(4): 209-220 ( ).
  • DOI: 10.1089/15362300152725936
  • Seidel G.E. Jr. Resource requirements for transgenic livestock research. Journal of Animal Science, 1993, 71(S. 3): 26-33 ( ).
  • DOI: 10.2527/1993.71suppl_326x
  • Eyestone W.H. Challenges and progress in the production of transgenic cattle. Reproduction, Fertility and Development, 1994, 6(5): 647-652 ( ).
  • DOI: 10.1071/rd9940647
  • Laible G. Production of transgenic livestock: overview of transgenic technologies. In: Animal Biotechnology 2 /H. Niemann, C. Wrenzycki (eds.). Springer, Cham, 2018: 95-121 ( ).
  • DOI: 10.1007/978-3-319-92348-2_6
  • Galli C., Lagutina I., Lazzari G. Introduction to cloning by nuclear transplantation. Cloning and Stem Cells, 2003, 5(4): 223-232 ( ).
  • DOI: 10.1089/153623003772032745
  • Cibelli J.B., Stice S.L., Golueke P.J., Kane J., Jerry J., Blackwell C., Ponce de Leon A., Robl J.M. Cloned transgenic calves produced from non-quiescent fetal fibroblasts. Science, 1998, 280(5367): 1256-1258 ( ).
  • DOI: 10.1126/science.280.5367.1256
  • Chan A.W.S., Homan E.J., Ballou L.U., Burns J.C., Bremel R.D. Transgenic cattle produced by reverse-transcribed gene transfer in oocytes. PNAS USA, 1998, 95(24): 14028-14033 ( ).
  • DOI: 10.1073/pnas.95.24.14028
  • Kuroiwa Y., Kasinathan P., Choi Y.J., Naeem R., Tomizuka K., Sullivan E.J., Knott J.G., Duteau A., Goldsby R.A., Osborne B.A., Ishida I., Robl J.M. Cloned transchromosomic calves producing human immunoglobulin. Nature Biotechnology, 2002, 20(9): 889-94 ( ).
  • DOI: 10.1038/nbt727
  • Hofmann A., Zakhartchenko V., Weppert M., Sebald H., Wenigerkind H., Brem G., Wolf E., Pfeifer A. Generation of transgenic cattle by lentiviral gene transfer into oocytes. Biology of Reproduction, 2004, 71(2): 405-409 ( ).
  • DOI: 10.1095/biolreprod.104.028472
  • Richt J.A., Kasinathan P., Hamir A.N., Castilla J., Sathiyaseelan T., Vargas F., Sathiyaseelan J., Wu H., Matsushita H., Koster J., Kato S., Ishida I., Soto C., Robl J.M., Kuroiwa Y. Production of cattle lacking prion protein. Nature Biotechnology, 2007, 25: 132-138 ( ).
  • DOI: 10.1038/nbt1271
  • Yu S., Luo J., Song Z., Ding F., Dai Y., Li N. Highly efficient modification of beta-lactoglobulin (BLG) gene via zinc-finger nucleases in cattle. Cell Research, 2011, 21(11): 1638-1640 ( ).
  • DOI: 10.1038/cr.2011.153
  • Liu X., Wang Y., Guo W., Chang B., Liu J., Guo Z., Quan F., Zhang Y. Zinc-finger nickase-mediated insertion of the lysostaphin gene into the beta-casein locus in cloned cows. Nature Communications, 2013, 4(1): 2565 ( ).
  • DOI: 10.1038/ncomms3565
  • Proudfoot C., Carlson D.F., Huddart R., Long C.R., Pryor J.H., King T.J., Lillico S.G., Mileham A.J., McLaren D.G., Whitelaw C.B., Fahrenkrug S.C. Genome edited sheep and cattle. Transgenic Research, 2015, 24(1): 147-153 ( ).
  • DOI: 10.1007/s11248-014-9832-x
  • Wu H., Wang Y., Zhang Y., Yang M., Lv J., Liu J., Zhang Y. TALE nickase-mediated SP110 knock-in endows cattle with increased resistance to tuberculosis. PNAS, 2015, 112(13): E1530-E1539 ( ).
  • DOI: 10.1073/pnas.1421587112
  • Yum S.Y., Lee S.J., Kim H.M., Choi W.J., Park J.H., Lee W.W, Kim H.J., Bae S.H., Lee J.H., Moon J.Y., Lee J.H., Lee C.I., Son B.J., Song S.H., Ji S.M., Kim S.J., Jang G. Efficient generation of transgenic cattle using the DNA transposon and their analysis by next-generation sequencing. Scientific Reports, 2016, 6: 27185 ( ).
  • DOI: 10.1038/srep27185
  • Gao Y., Wu H., Wang Y., Liu X., Chen L., Li Q., Cui C., Liu X., Zhang J., Zhang Y. Single Cas9 nickase induced generation of NRAMP1 knock-in cattle with reduced off-target effects. Genome Biology, 2017, 18(1): 13 ( ).
  • DOI: 10.1186/s13059-016-1144-4
  • Bosch P., Forcato D.O., Alustiza F.E., Alessio A.P., Fili A.E., Olmos Nicotra M.F., Liaudat A.C., Rodríguez N., Talluri T.R., Kues W.A. Exogenous enzymes upgrade transgenesis and genetic engineering of farm animals. Cellular and Molecular Life Sciences, 2015, 72: 1907-1929 ( ).
  • DOI: 10.1007/s00018-015-1842-1
  • Сингина Г.Н., Волкова Н.А., Багиров В.А., Зиновьева Н.А. Криобанки соматических клеток как перспективный способ сохранения генетических ресурсов животных. Сельскохозяйственная биология, 2014, 6: 3-14 ( ).
  • DOI: 10.15389/agrobiology.2014.6.3rus
Еще
Статья обзорная