Weighted Trudinger - Moser inequalities and applications
Автор: Calanchi M., Ruf B.
Рубрика: Математическое моделирование
Статья в выпуске: 3 т.8, 2015 года.
Бесплатный доступ
Trudinger - Moser inequalities provide continuous embeddings in the borderline cases of the standard Sobolev embeddings, in which the embeddings into Lebesgue Lp spaces break down. One is led to consider their natural generalization, which are embeddings into Orlicz spaces with corresponding maximal growth functions which are of exponential type. Some parameters come up in the description of these growth functions. The parameter ranges for which embeddings exist increase by the use of weights in the Sobolev norm, and one is led to consider weighted TM inequalities. Some interesting cases are presented for special weights in dimension two, with applications to mean field equations of Liouville type.
Trudinger - moser inequalities, orlicz spaces, maximal growth functions, weighted tm inequalities, весовые неравенства tm
Короткий адрес: https://sciup.org/147159329
IDR: 147159329 | DOI: 10.14529/mmp150303
Список литературы Weighted Trudinger - Moser inequalities and applications
- Yudovich V.I. Some Estimates Connected with Integral Operators and with Solutions of Elliptic Equations. Dokl. Akad. Nauk SSSR, 1961, vol. 138, pp. 805-808.
- Peetre J. Espaces d'interpolation et théorème de Soboleff. Ann. Inst. Fourier, 1966, vol. 16, pp. 279-317. DOI: DOI: 10.5802/aif.232
- Pohozaev S.I. The Sobolev Embedding in the Case pl=n. Proc. of the Technical Scientific Conference on Advances of Scientific Research, 1964 -1965, Mathematics Section, (Moskov. Energet. Inst., Moscow), pp. 158-170.
- Trudinger N.S. On Imbeddings into Orlicz Spaces and Some Applications. Journal of Applied Mathematics and Mechanics, 1967, vol. 17, pp. 473-483. DOI: DOI: 10.1512/iumj.1968.17.17028
- Moser J. Moser J. A Sharp Form of an Inequality by N. Trudinger. Indiana University Mathematics Journal, 1970/71, vol. 20, pp. 1077-1092. DOI: DOI: 10.1512/iumj.1971.20.20101
- Liouville J., Sur l'equation aux derivées partielles. Journal de Mathématiques Pures et Appliquées, 1853, vol. 18, pp. 71-72.
- Caglioti E., Lions P.L., Marchioro C., Pulvirenti M. A Special Class of Stationary Flows for Two-Dimensional Euler Equations: a Statistical Mechanics Description. Communications in Mathematical Physics, 1992, vol. 143, no. 3, pp. 501-525. DOI: DOI: 10.1007/BF02099262
- Caglioti E., Lions P.L., Marchioro C., Pulvirenti M. A Special Class of Stationary Flows for Two-Dimensional Euler Equations: a Statistical Mechanics Description. II. Communications in Mathematical Physics, 1995, vol. 174, no. 2, pp. 229-260. DOI: DOI: 10.1007/BF02099602
- Chanillo S., Kiessling M. Rotational Symmetry of Solutions of Some Nonlinear Problems in Statistical Mechanics and in Geometry. Communications in Mathematical Physics, 1994, vol. 160, no. 2, pp. 217-238. DOI: DOI: 10.1007/BF02103274
- Kiessling M.K.-H. Statistical Mechanics of Classical Particles with Logarithmic Interactions. Communications on Pure and Applied Mathematics, 1993, vol. 46, pp. 27-56. DOI: DOI: 10.1002/cpa.3160460103
- Tarantello G. Multiple Condensate Solutions for the Chern -Simons -Higgs Theory. Journal of Mathematical Physics, 1996, vol. 37, pp. 3769-3796. DOI: DOI: 10.1063/1.531601
- Tarantello G. Analytical Aspects of Liouville-Type Equations with Singular Sources. Handbook of Differential Equations (M. Chipot and P. Quittner, eds.), Elsevier, North Holland, 2004, pp. 491-592.
- Li Y.Y. Harnack Type Inequality: the Method of Moving Planes. Communications in Mathematical Physics, 1999, vol. 200, pp. 421-444. DOI: DOI: 10.1007/s002200050536
- Chen C.C., Lin C.S. Mean Field Equations of Liouville Type with Singular Data: Sharper Estimates. Discrete and Continuous Dynamic Systems, 2010, vol. 28, no. 3, pp. 123-127.
- Calanchi M., Terraneo E. Non-radial Maximizers for Functionals with Exponential Nonlinearity in R2. Advanced Nonlinear Studies, 2005, vol. 5, pp. 337-350.
- Adimurthi, Sandeep K. A Singular Moser -Trudinger Embedding and Its Applications. Nonlinear Differential Equations and Applications, 2007, vol. 13, issue 5-6, pp. 585-603. DOI: DOI: 10.1007/s00030-006-4025-9
- Calanchi M., Ruf B. On a Trudinger -Moser Type Inequality with Logarithmic Weights. Journal of Differential Equations, 2015, no. 3, pp. 258-263. DOI: DOI: 10.1016/j.jde.2014.11.019
- Calanchi M. Some Weighted Inequalitie of Trudinger -Moser Type in Progress. Nonlinear Differential Equations and Applications, Birkhauser, 2014, vol. 85, pp. 163-174.
- Calanchi M., Ruf B. Trudinger -Moser Type Inequalities with Logarithmic Weights in Dimension N. Nonlinear Anal., 2015, vol. 121, pp. 403-411.
- Kufner A. Weighted Sobolev Spaces. John Wiley & Sons Ltd, 1985.
- Leckband M.A. An Integral Inequality with Applications. Transactions of the American Mathematical Society, 1984, vol. 283, no. 1, pp. 157-168. DOI: DOI: 10.1090/S0002-9947-1984-0735413-7
- De Figueiredo G., Miyagaki O.H., Ruf B. Elliptic Equations in R2 with Nonlinearities in the Critical Growth Range. Calc. Var. Partial Differential Equations, 1995, vol. 3, no. 2, pp. 139-153. DOI: DOI: 10.1007/BF01205003