Замечание об алгоритме точной факторизации для матричных многочленов

Автор: Адуков Виктор Михайлович, Адукова Наталия Викторовна, Мишурис Геннадий

Журнал: Вестник Южно-Уральского государственного университета. Серия: Математическое моделирование и программирование @vestnik-susu-mmp

Рубрика: Программирование

Статья в выпуске: 1 т.16, 2023 года.

Бесплатный доступ

Существуют два основных препятствия для широкого использования метода факторизации Винера - Хопфа для матриц-функций, используемых для решения векторных краевых задач Римана. Первое препятствие связано с отсутствием общего явного метода факторизации в матричном случае, хотя для конкретных классов матричных функций могут существовать явные (конструктивные) методы факторизации. Второе препятствие является следствием того, что факторизация матриц-функций, вообще говоря, является неустойчивой по отношению к малому возмущению исходной функции. В результате последнего, реализация любого конструктивного алгоритма, даже если он существует для данной матрицы-функции, на практике не может быть осуществлена. Более того, разрабатывая явные методы, авторы часто не анализируют его численную реализацию, неявно предполагая, что все шаги предложенного конструктивного алгоритма могут быть выполнены точно. В предлагаемой работе мы продолжаем изучение связи между явным и точным решениями задачи факторизации в классе матричных многочленов. Основная цель - получить алгоритм точного вычисления так называемых индексов и существенных многочленов конечной последовательности матриц. Это краеугольный камень проблемы точной факторизации матричных многочленов.

Еще

Факторизация винера - хопфа, теплицевы матрицы, существенные многочлены последовательности

Короткий адрес: https://sciup.org/147240856

IDR: 147240856   |   DOI: 10.14529/mmp230104

Список литературы Замечание об алгоритме точной факторизации для матричных многочленов

  • Lawrie J.B., Abrahams I.D. A Brief Historical Perspective of the Wiener-Hopf Technique. Journal of Engineering Mathematics, 2007, vol. 59, pp. 351-358. DOI: 10.1007/s10665-007-9195-x
  • Daniele V.G., Zieh R.S. The Wiener-Hopf Method in Electromagnetics. ISMB Series. New York, SciTech Publishing, Edison, 2014.
  • Abrahams I.D. On the Application of the Wiener-Hopf Technique to Problems in Dynamic Elasticity. Wave Motion, 2002, vol. 36, pp. 311-333.
  • Kisil A.V., Abrahams I.D., Mishuris G. et al. The Wiener-Hopf Technique, its Generalizations and Applications: Constructive and Approximate Methods. Proceedings of the Royal Society A, 2021, vol. 477, no. 2254, article ID: 20210533, 32 p. DOI: 10.1098/rspa.2021.0533
  • Gohberg I.C., Feldman I.A. Convolution Equations and Projection Methods for their Solution. Providence, American Mathematical Society, 1974.
  • Clancey K., Gohberg I. Factorization of Matrix Functions and Singular Integral Operators. Basel, Boston, Birkauser, 1987.
  • Zakharov V.E., Manakov S.V., Novikov S.P. et.al. Soliton Theory: Inverse Scattering Method, 1980, Nauka, Moscow.
  • Gohberg I.C., M.A. Kaashoek M.A., Spitkovsky I.M., An Overview of Matrix Factorization Theory and Operator Applications, Operator Theory: Advances and Applications, 2003, vol. 141, pp. 1-102.
  • Ephremidze L., Janashia G., Lagvilava E., A New Method of Matrix Spectral Factorization. IEEE Transactions on Information Theory, 2011, vol. 57, no. 4, pp. 2318 - 2326.
  • Gohberg I.C., Lerer L., Rodman L. Factorization Indices for Matrix Polynomials. Bulletin of the American Mathematical Society, 1978, vol. 84, no. 2, pp. 275-277.
  • Adukov V.M. Factorization of Analytic Matrix-Valued Functions. Theoretical and Mathematical Physics, 1999, vol. 118, no. 3, pp. 255-263. DOI: 10.4213/tmf704
  • Adukov V.M. Wiener-Hopf Factorization of Meromorphic Matrix-Valued Functions. St. Petersburg Mathematical Journal, 1993, vol. 4, no. 1, pp. 51-69.
  • Rogosin S.V., Mishuris G. Constructive Methods for Factorization of Matrix Functions. IMA Journal of Applied Mathematics, 2016, vol. 81, no. 2, pp. 365-391. DOI: 10.1093/imamat/hxv038
  • Giorgadze G, Manjavidze N. On Some Constructive Methods for the Matrix RiemannHilbert Boundary Value Problem. Journal of Mathematical Sciences, 2013, vol. 195, no.2, pp. 146-174. DOI: 10.1007/s10958-013-1571-7
  • Kisil A.V. Stability Analysis of Matrix Wiener-Hopf Factorization of Daniele-Khrapkov Class and Reliable Approximate Factorization. Proceedings of the Royal Society A, 2015, vol. 471, article ID: 20150146, 15 p. DOI: 10.1098/rspa.2015.0146
  • Adukov V.M., Adukova N.V., Mishuris G. An Explicit Wiener-Hopf Factorization Algorithm for Matrix Polynomials and Its Exact Realizations within ExactMPF Package. Proceedings of the Royal Society A, 2022, vol. 478, no. 2263, article ID: 20210941, 22 p. DOI: 10.1098/rspa.2021.0941
  • Adukov V.M. Generalized Inversion of Block Toeplitz Matrices. Linear Algebra and Its Applications, 1998, vol. 274, pp. 85-124.
  • Adukova N.V. ExactMPF Package for Constructing the Exact Wiener-Hopf Factorization of Matrix Polynomials in SCM Maple. Proceedings of the XXII International Scientific Conference "Computer Mathematics Systems and their Applications", Smolensk, 2021, vol. 22, pp. 20-27. (in Russian)
Еще
Статья научная