Афлатоксины, их влияние на продовольственное сырье и методы обеззараживания

Бесплатный доступ

В статье представлены пути загрязнения продовольственного сырья и продуктов питания афлатоксинами, которые являются одной из наиболее опасных групп микотоксинов и обладают сильными канцерогенными свойствами. К методам детоксикации афлатоксинов относятся: механические, физические и химические методы. В статье автор приводит исследование по детоксикации афлатоксинов методом СВЧ-обеззараживания.

Продовольственное сырье, микотоксины, афлатоксины, штаммы, микроскопические грибы, детоксикация, свч-обеззараживание

Короткий адрес: https://sciup.org/147160685

IDR: 147160685

Текст научной статьи Афлатоксины, их влияние на продовольственное сырье и методы обеззараживания

К продовольственному сырью относятся объекты растительного, животного, микробиологического и минерального происхождения, используемые для производства пищевых продуктов.

Основные пути загрязнения продовольственного сырья и продуктов питания – это:

– загрязнение сельскохозяйственных культур и продуктов животноводства пестицидами, используемыми для борьбы с вредителями растений и в ветеринарной практике для профилактики заболеваний животных;

– нарушение правил гигиены при использовании удобрений в растениеводстве;

– частое использование в процессе кормления животных и птиц неразрешенных кормовых добавок, различных консервантов, стимуляторов роста, лечебных и профилактических медикаментов либо применение в повышенных дозах разрешенных добавок и прочих соединений;

– миграция в продукты питания токсических веществ из сырьевых ресурсов, пищевого оборудования, посуды, инвентаря, тары, упаковок вследствие использования неразрешенных полимерных, резиновых и металлических материалов;

– несоблюдение санитарных требований в технологии производства и хранения пищевых продуктов, что приводит к образованию бактериальных токсинов (микотоксины, бату-лотоксины и др.).

– поступление в продукты питания токсических веществ, в том числе радионуклидов, из окружающей среды – атмосферного воздуха, почвы, водоемов;

– использование неразрешенных красителей, консервантов, антиокислителей или применение разрешенных в повышенных дозах;

– применение нетрадиционных технологий производства продуктов питания либо отдельных пищевых веществ, полученных путем химического или микробиологического синтеза.

Санитарное качество продовольственного сырья снижается от развития в нем токсинообразующих грибов и накопления продуктов их жизнедеятельности – микотоксинов, вырабатываемых плесневыми грибами. Рассматривая микотоксины с биологической точки зрения, можно отметить, что они необходимы для выживания плесневых грибов и сохранения вида. В то же время, с точки зрения гигиены продовольственного сырья, они являются особо опасными веществами, загрязняющими сырье и продукты питания [2]. Попав в организм человека или животных, они вызывают различные отравления, которые способствуют появлению специфического заболевания, называемого микотоксикозом. Кроме того, отдельные микотоксины обладают канцерогенными свойствами [4].

Известно более 250 различных микроскопических грибов, продуцирующих около 100 токсичных метаболитов, при этом не сформирована единая классификация и номенклатура микотоксинов. В отдельных случаях в основу группового деления микотоксинов положена их химическая структура, в последующих – характер действия и далее – видовая принадлежность грибов-продуцентов [2].

Афлатоксины являются одной из наиболее опасных групп микотоксинов и обладают сильными канцерогенными свойствами.

Афлатоксины продуцируются штаммами двух видов микроскопических грибов: Aspergillus flavus (Link.) и Aspergillus parasiticus (Speare). Грибы этого рода относят к мезофильным микроскопическим, способным развиваться при температуре 6 – 8º C.

Благодаря ученым-микробиологам стало известно, что семейство афлатоксинов включает десять соединений. Наиболее токсичными является афлатоксин B1, Т2 токсин, зеара-ленон и дезоксиниваленол (вомитоксин). Афлатоксины данной группы являются наиболее сильными гепотропными ядами, обладающими выраженными канцерогенными свойствами.

Анализируя различные способы переработки продовольственного сырья и обычные приемы кулинарной обработки пищевых продуктов, было выявлено, что происходит лишь частичное снижение уровня загрязнения афлатоксинами. При помоле загрязненного зерна большая часть токсинов остается в отрубях. Накапливаясь в зерне, токсины передаются по наследству муке и хлебу, делая их токсичными. При экструдировании и поджаривании зернового сырья наступает частичная инактивация афлатоксинов [4].

Т2 токсин продуцируют грибы рода Fusarium. Среди других токсинов они часто встречаются и отличаются высокой токсичностью. Повышенная влажность и пониженная температура благотворно влияет на их активное накопление. По этой причине в перезимовавшем под снегом зерне можно обнаружить Т2 токсин, так как он устойчив к температурным воздействиям.

Зеараленон продуцирует различные виды грибов рода Fusarium. В основном, гриб F. Graminearam. В естественных условиях чаще всего зеараленон встречается в зерновом сырье. Работы по исследованию влияния методов и условий переработки зерна на уровень загрязненности показали, что данный микотоксин концентрируется, главным образом, внутриклеточно и во фракциях с высоким содержанием жира. Тепловая обработка в нейтральной среде или кислой не разрушает его, а в щелочной при 100 ºC за время 50 минут инактивируется 56 % токсина.

Дезоксиниваленол (вомитоксин) относится к высокотоксичным ядам и может быть причиной отравления людей и животных. Продуцирует его гриб Fusarium graminearum. При сильном поражении зерно становится щуплым, сморщенным, легковесным, иногда с малиновым или розовым оттенком. Вомиток-син накапливается в зерне и соломе в процессе вегетации. В продуктах переработки зерна (отрубях), лузге и зерноотходах концентрация его значительно выше, чем в муке, к тому же он устойчив к высоким температурным воздействиям.

Высокотоксичные и канцерогенные микотоксины обнаружены в значительных количествах в основных пищевых продуктах во всем мире, что привело к необходимости разработки методов детоксикации (разрушения и обезвреживания) сырья, пищевых продуктов и кормов.

К методам детоксикации афлатоксинов относятся: механические, физические и химические методы.

Механические методы детоксикации связаны с отделением загрязненного сырья (материала) вручную или с помощью электронно-колориметрических сортировщиков.

Физические методы основаны на очень жесткой термической обработке материала (автоклавирование), а также связаны с ультрафиолетовым облучением и озонированием. При этом необходимо отметить, что микотоксины обладают способностью флуоресцировать при воздействии длинноволнового ультрафиолетового излучения. Это лежит в основе физико-химических методов их выявления и количественного определения.

Химический метод предполагает обработку материала сильными окислителями [4].

Необходимо отметить, что каждый из названных методов имеет свои существенные недостатки: применение механических и физических методов не дает высокого эффекта, а химические методы приводят к разрушению не только афлатоксинов, но и полезных нутриентов и, кроме этого, нарушают их всасывание.

С целью обеззараживания семян овощных и зерновых культур, продовольственного, фуражного зерна и продуктов их переработки, сухофруктов (кураги, чернослива, изюма) и другого сырья для хлебопекарного и кондитерского производства от микотоксинов учеными КрасГАУ, под руководством ректора Красноярского государственного аграрного университета, доктора технических наук, профессора, член-корреспондента РАСХН, академика Национальной академии наук Монголии Н.В. Цугленка были разработаны методики по обеззараживанию в электромагнитном поле СВЧ.

Метод обеззараживания в электромагнитном поле является одним из электрических способов борьбы с вредителями через облучение растительного сырья потоками энергии электромагнитных колебаний СВЧ [1]. Явления, происходящие при воздействии СВЧ-энергии на живые ткани, имеют в основном тепловой характер, зависят от дисперсии, диэлектрической проницаемости и проводимости. Гибель микроорганизмов происходит в результате денатурации белка при сравнительно невысоких темпах нагрева 0,5–0,8 ºC/с при удельной мощности 0,09–0,3 кВт/кг, в том случае, если темпы нагрева увеличиваются до 1,2–1,6 ºC/с, то гибель происходит за счет диэлектрического разрушения клеток живой ткани. Технология обеззараживания пищевого сырья с использованием СВЧ-поля предполагает объединение следующих операций:

– предварительное увлажнение анализируемого сырья, так как в основе большинства технологических процессов, выполняемых с помощью СВЧ-энергии лежит диэлектрический нагрев обрабатываемого материала [3–5];

– нагрев продукции для достижения определенного уровня их равномерного увлажнения, а также инициации роста спор грибов;

– термическое обеззараживание.

Были проведены исследования с использованием «Методики выполнения измерения доли микотоксинов в продовольственном сырье методом тонкослойной хроматографии», а также ГОСТ 3071-2001 «Продукты пищевые. Методы выявления и определения содержания афлатоксинов В1 и М1». Опыты проводились на образцах, отобранных от партий зерна пшеницы, хранившихся длительное время при температуре 6–8 °С, с влажностью 20 %. Обследование образцов на зараженность микроскопическими грибами подтвердило предположение о загрязнении патогенами, продуцирующими микотоксины. Выявлены грибы родов: Aspergillus, Penicillium, Fusarium, Mucor. Преобладающее распространение имели грибы рода Aspergillus [4].

С целью установления влияния СВЧ-энергии были проведены опыты. Пробы зерна после обработки СВЧ-энергией высевали в чашки Петри по 50 штук на питательный агар – среду Чапика (см. таблицу).

Из табличных результатов видно, что при обработке зерна в режимах варианта 1 инфекция иллиминирована полностью, а в режимах варианта 2 сведена до безопасных пределов. В 3-м варианте не происходит обеззараживания, все виды микотоксинов остались на уровне контроля. В ходе исследования выяснилось, что партия зерна имеет высокий процент зараженности грибами, продуцирующими микотоксины, было принято решение о проведении исследования на содержание афлатоксина В1. Подготовка обработанных в СВЧ-поле проб зерна и контрольного образца проводилась по методике ГОСТ 30711-2001 [4].

На пластины «Силуфол» сверху и снизу карандашом были нанесены линии на расстоянии 1,5 см от краев. На нижней (стартовой) линии были отмечены три точки через 2 см друг от друга. В эти точки были нанесены с помощью микрошприца по 0,002; 0,005; 0,01 см3 рабочего раствора (смесь афлатоксинов В1 и В2). На расстоянии один сантиметр между точками нанесли по 0,01 и 0,02 см3 исследуемого раствора. Пластинки помещаются в хромотографичесскую камеру, заполненную смесью: этиловый эфир-метанол-вода. После извлечения пластинок из камеры их просушивают и просвечивают ультрафиолетовым излучением. На хромотограмме рабочего раствора последние расположены по направлению движения фронта растворителя в следующем порядке: В2, В1. Обнаружение на хро-мотограммах экстракта пятен, соответствующих по хромотографической подвижности и цвету флюоресценции пятнам афлатоксинов В1, свидетельствует о наличии этих афлатоксинов в зерне. Обнаружение на хромотограм-мах экстракта пятен, соответствующих по

Влияние СВЧ энергии на микотоксины

Варианты

Режимы

Температура нагрева зерна t, °C

Зараженность грибами (штук)

Экспозиция τ, с

Мощность P, Вт

Aspergillus

Penicillium

Fusarium

Alternaria

1

90

600

85

0

0

0

0

2

60

450

65

0

3

0

1

3

30

300

43

50

42

40

19

Контроль

50

43

39

17

хромотографической подвижности и цвету пятен афлатоксина В2, подтверждают правильность извлечения афлатоксинов из пробы. Для подтверждения присутствия афлатоксина B1 пластины опрыскивались раствором азотной кислоты и вновь просвечивались ультрафиолетовым излучением. Цвет флюоресценции пластин с нанесенными рабочими растворами менялся с насыщенного яркосинего свечения на желтый. При опрыскивании пластин с нанесенными испытуемыми пробами раствором азотной кислоты цвет с сине-фиолетового менялся на желтый в варианте 3 и контроле, а в вариантах 1 и 2 не менялся. Изменение цвета флюоресценции на желтый в вариантах 3 и контрольном свидетельствует о наличии афлатоксинов [4].

Следовательно, в вариантах 1 и 2 под действием температуры и режимных параметров энергии СВЧ-поля происходило разрушение афлатоксинов.

В результате воздействия эффективных режимов СВЧ-обеззараживания были выявлены положительные качественные изменения биохимического состава.

Обработка СВЧ-энергией на заключительном этапе гидротермической обработки позволяет изменять реологические свойства муки. Режимы экспозиции τ = 39–60 с, мощность Р = 300–400 Вт при температуре нагрева 46–55 °С ослабляют клейковину; режимы: экспозиция τ = 60–90 с, мощность Р = 450–600 Вт при температуре нагрева зерна 70–75 °С укрепляют клейковину. А режимы: экспозиция τ=90 с, мощность Р=600 Вт при температуре нагрева зерна 80°С вызывают разрушение клейковинного комплекса.

Воздействие СВЧ-энергии не влияет на показатель числа падения. Режимы СВЧ-обеззараживания при температуре нагрева 60–85 °С улучшают качественные показатели жира зерна кукурузы, уменьшают перекисное число жира в 1,5–3 раза, кислотное число на 30 %, что делает продукцию безопасной. По- лученные показатели сохраняются в течение 2,5 месяцев, а в дальнейшем начинают возрастать, но медленнее, чем в контроле.

В результате воздействия режимов: экспозиция τ = 60–90 с, мощность Р = 450–600 Вт, при температуре 65–80 °С разрушаются высокотоксичные вещества – афлатоксины [4].

Из представленных исследований следует, что обработка зерна СВЧ-полем в десятки, раз ускоряет процесс термообработки и дает возможность использовать для этого микроэлементы физиологически и биологически активные вещества. Время обработки сельскохозяйственного сырья СВЧ-полем для обеззараживания от вирусных, грибных и бактериальных болезней составляет 120–150 с, что позволяет снизить энергоматериальные затраты на предприятиях АПК.

Список литературы Афлатоксины, их влияние на продовольственное сырье и методы обеззараживания

  • Наумов, Н.А. Методы микологических и фитопатологических исследований/Н.А. Наумов. -М.: Сельхозгиз. 1973. -272 с.
  • Нечаев, А.П. Пищевая химия: учебник для студентов вузов, обучающихся по направлениям: 552400 «Технология продуктов питания»/А.П. Нечаев, С.Е. Траубенберг, А.А. Кочеткова. -СПб.: ГИОРД, 2003.-640 с.: ил.
  • Цугленок, Г.И. Исследование СВЧ-обеззараживания в пищевой промышленности. Экономика и социум на рубеже веков: мат-лы межвуз. науч. конф./Г.И. Цугленок, Г.Г. Юсупова, Т.А. Толмачева. -Челябинск, 2003. -Ч. 1.
  • Юсупов, Р.Х. Сырье для хлебопекарного и кондитерского производств и методы его улучшения: моногр./Р.Х. Юсупов, Т.А. Толмачева, Г.Г. Юсупова. -Челяб. Ин-т (фил) ГОУ ВПО «РГТЭУ». -Челябинск, 2004. -156 с.
  • Юсупова, Г.Г. Экологический метод обеззараживания сырья используемого в хлебном и кондитерском производствах/Г.Г. Юсупова, Г.И. Цугленок, Т.А. Толмачева//Мат-лы науч. техн. конф. -Челябинск: Челябинский государственный агроинженерный университет, 2003. -Ч. 3. -С. 223-238.
Статья научная