Algorithm for processing the results of calculations for determining the body of optimal parameters in the weighted finite element method

Бесплатный доступ

The weighted finite element method allows to find an approximate solution to a boundary value problem with a singularity faster in 106 times than the classical finite element method for a given error equal to 10-3. In this case, it is required to apply the necessary control parameters in the weighted finite element method. The body of optimal parameters is determined on the basis of carrying out and analysing a series of numerical experiments. In this paper we propose an algorithm for processing the results of calculations and determining the body of optimal parameters for the Dirichlet problem and the Lamé system in a domain with one reentrant corner on the boundary taking values from π to 2π.

Еще

Corner singularity, weighted finite element method, body of optimal parameters

Короткий адрес: https://sciup.org/147240331

IDR: 147240331   |   DOI: 10.14529/mmp220406

Список литературы Algorithm for processing the results of calculations for determining the body of optimal parameters in the weighted finite element method

  • Haodong Chen, Qingsong Wang, Liu G.R., Yu Wang, Jinhua Sun. Simulation of Thermoelastic Crack Problems Using Singular Edge-Based Smoothed Finite Element Method. International Journal of Mechanical Sciences, 2016, vol. 115, pp. 123–134. DOI: 10.1016/j.ijmecsci.2016.06.012
  • Zeng W, Liu G.R., Li D, Dong X.W. A Smoothing Technique Based Beta Finite Element Method ( FEM) for Crystal Plasticity Modeling. Computers and Structures, 2016, vol. 162, pp. 48–67. DOI: 10.1016/j.compstruc.2015.09.007
  • Surendran M., Sundararajan Natarajan, Bordas P.A., Palani G.S. Linear Smoothed Extended Finite Element Method. International Journal for Numerical Methods in Engineering, 2017, vol. 112, pp. 1733–1749. DOI: 10.1002/nme.5579
  • Aghahosseini A., Khosravifard A., Tinh Quoc Bui. Efficient Analysis of Dynamic Fracture Mechanics in Various Media by a Novel Meshfree Approach. Theoretical and Applied Fracture Mechanics, 2019, vol. 99, pp. 161–176. DOI: 10.1016/j.tafmec.2018.12.002
  • Nicaise S., Renard Y., Chahine E. Optimal Convergence Analysis for the Extended Finite Element Method. International Journal for Numerical Methods in Engineering, 2011, vol. 86, pp. 528–548. DOI: 10.1002/nme.3092
  • Junwei Chen, Xiaoping Zhou, Lunshi Zhou, Filippo Berto. Simple and Effective Approach to Modeling Crack Propagation in the Framework of Extended Finite Element Method. Theoretical and Applied Fracture Mechanics, 2020, vol. 106, article ID: 102452, 21 p. DOI: 10.1016/j.tafmec.2019.102452
  • Xiao-Ping Zhou, Jun-Wei Chen, Filippo Berto. XFEM Based Node Scheme for the Frictional Contact Crack Problem. Computers and Structures, 2020, vol. 231, article ID: 106221, 22 p. DOI: 10.1016/j.compstruc.2020.106221
  • Xiaoping Zhou, Zhiming Jia, Longfei Wang. A Field-Enriched Finite Element Method for Brittle Fracture in Rocks Subjected to Mixed Mode Loading. Engineering Analysis with Boundary Elements, 2021, vol. 129, pp. 105–124. DOI: 10.1016/j.enganabound.2021.04.023
  • Long-Fei Wang, Xiao-Ping Zhou. A Field-Enriched Finite Element Method for Simulating the Failure Process of Rocks with Different Defects. Computers and Structures, 2021, vol. 250, article ID: 106539, 23 p. DOI: 10.1016/j.compstruc.2021.106539
  • Rukavishnikov V.A., Rukavishnikova E.I. Numerical Method for Dirichlet Problem with Degeneration of the Solution on the Entire Boundary. Symmetry, 2019, vol. 11, no. 12, article ID: 1455, 11 p. DOI: 10.3390/sym11121455
  • Rukavishnikov V.A., Rukavishnikova E.I. Error Estimate FEM for the Nikol’skij–Lizorkin Problem with Degeneracy. Journal of Computational and Applied Mathematics, 2022, vol. 403, article ID: 113841, 11 p. DOI: 10.1016/j.cam.2021.113841
  • Rukavishnikov V.A. On the Existence and Uniqueness of an R -Generalized Solution of a Boundary Value Problem with Uncoordinated Degeneration of the Input Data. Doklady Mathematics, 2014, vol. 90, pp. 562–564. DOI: 10.1134/S1064562414060155
  • Rukavishnikov V.A., Rukavishnikova E.I. Existence and Uniqueness of an R -Generalized Solution of the Dirichlet Problem for the Lam´e System with a Corner Singularity. Differential Equations, 2019, vol. 55, no. 6, pp. 832–840. DOI: 10.1134/S0012266119060107
  • Rukavishnikov V.A., Rukavishnikova E.I. On the Dirichlet problem with Corner Singularity. Mathematics, 2020, vol. 8, article ID: 106400, 7 p. DOI: 10.3390/math8111870
  • Rukavishnikov V.A., Kuznetsova E.V. The R -Generalized Solution of a Boundary Value Problem with a Singularity Belongs to the Space Wk+22, +/2+k+1(, ). Differential Equations, 2009, vol. 45, no. 6, pp. 913–917. DOI: 10.1134/S0012266109060147
  • Rukavishnikov V.A., Rukavishnikova H.I. The Finite Element Method for a Boundary Value Problem with Strong Singularity. Journal of Computational and Applied Mathematics, 2010, vol. 234, pp. 2870–2882. DOI: 10.1016/j.cam.2010.01.020
  • Rukavishnikov V.A., Mosolapov A.O. New Numerical Method for Solving Time-Harmonic Maxwell Equations with Strong Singularity. Journal of Computational Physics, 2012, vol. 231, pp. 2438–2448. DOI: 10.1016/j.jcp.2011.11.031
  • Rukavishnikov V.A., Rukavishnikov A.V. Weighted Finite Element Method for the Stokes Problem with Corner Singularity. Journal of Computational and Applied Mathematics, 2018, vol. 341, pp. 144–156. DOI: 10.1016/j.cam.2018.04.014
  • Rukavishnikov V.A., Rukavishnikov A.V. New Approximate Method for Solving the Stokes Problem in a Domain with Corner Singularity. Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 2018, vol. 11, no. 1, pp. 95–108. DOI: 10.14529/mmp180109
  • Rukavishnikov V.A., Rukavishnikov A.V. New Numerical Method for the Rotation form of the Oseen Problem with Corner Singularity. Symmetry, 2019, vol. 11, no. 1, article ID: 54, 17 p. DOI: 10.3390/sym11010054
  • Rukavishnikov V.A., Mosolapov A.O., Rukavishnikova E.I. Weighted Finite Element Method for Elasticity Problem with a Crack. Computers and Structures, 2021, vol. 243, article ID: 106400, 9 p. DOI: 10.1016/j.compstruc.2020.106400
  • Rukavishnikov V.A. Body of Optimal Parameters in the Weighted Finite Element Method for the Crack Problem. Journal of Applied and Computational Mechanics, 2021, vol. 7, no. 4, pp. 2159–2170. DOI: 10.22055/jacm.2021.38041.3142
  • Rukavishnikov V.A. Weighted FEM for Two-Dimensional Elasticity Problem with Corner Singularity. Lecture Notes in Computational Science and Engineering, 2016, vol. 112, pp. 411Џ419. DOI: 10.1007/978-3-319-39929-4_39
  • Kondrat’ev V.A. Boundary-Value Problems for Elliptic Equations in Domains with Conical or Angular Points. Transactions of the Moscow Mathematical Society, 1967, vol. 16, pp. 227-313.
  • Rukavishnikov V.A., Nikolaev S.G. Proba IV-program for the Numerical Solution of Two-Dimensional Problems of the Theory of Elasticity with a Singularity. Certificate of State Registration for the Computer Program, no. 2016610761, May 21, 2013.
  • Gnuplot Homepage. Available at: http://www.gnuplot.info (accessed 30.10.2022)
Еще
Статья научная