Enhancing Legally-Based E-Government Services in Education Through Artificial Intelligence

Автор: Žaklina Spalević, Jelena Kaljević, Slaviša Vučetić, Petar Milić

Журнал: International Journal of Cognitive Research in Science, Engineering and Education @ijcrsee

Рубрика: Review articles

Статья в выпуске: 3 vol.11, 2023 года.

Бесплатный доступ

Through the utilization of artificial intelligence (AI), governments can automate the analysis of publicly available government datasets. This process aids in the recognition of patterns and the development of a more profound comprehension of various socio-economic factors and empowers governments to base their policy decisions on data, effectively tackling societal issues, and optimizing the allocation of resources. In this paper we present AI’s application in the realm of e-government, with particular emphasis on its potential influence on the advancement of this field through e-government services and their significance for a range of stakeholders. Moreover, we have conducted comprehensive review of existing literature on the subject and the identification of avenues for enhancement along with consideration of legislation as a potent instrument to guide the progression of AI within the sphere of e-government, thereby amplifying its transformative effect. We emphasize the importance of education in area of AI in order to ensure it’s high quality implementation in this and other areas.

Еще

Artificial Intelligence, e-government, Open Data, Transparency, Improvement

Короткий адрес: https://sciup.org/170200026

IDR: 170200026   |   DOI: 10.23947/2334-8496-2023-11-3-511-518

Список литературы Enhancing Legally-Based E-Government Services in Education Through Artificial Intelligence

  • AlBalushi, T. H. (2021). E-services quality: A perspective of service providers and service users. In Digital Service Platforms. IntechOpen. https://doi.org/10.5772/intechopen.97077 DOI: https://doi.org/10.5772/intechopen.97077
  • Al-Besher, A., & Kumar, K. (2022). Use of artificial intelligence to enhance e-government services. Measurement: Sensors, 24, 100484, https://doi.org/10.1016/j.measen.2022.100484 DOI: https://doi.org/10.1016/j.measen.2022.100484
  • Al-Mushayt, O. S. (2019). Automating E-government services with artificial intelligence. IEEE Access, 7, 146821-146829, https://doi.org/10.1109/ACCESS.2019.2946204 DOI: https://doi.org/10.1109/ACCESS.2019.2946204
  • AlShamsi, M., Salloum, S. A., Alshurideh, M., & Abdallah, S. (2020). Artificial intelligence and blockchain for transparency in governance. In Artificial intelligence for sustainable development: Theory, practice and future applications, pp. 219-230. Springer, https://doi.org/10.1007/978-3-030-51920-9_11 DOI: https://doi.org/10.1007/978-3-030-51920-9_11
  • Anderljung, M., & Hazell, J. (2023). Protecting Society from AI Misuse: When are Restrictions on Capabilities Warranted?. arXiv preprint arXiv:2303.09377, https://doi.org/10.48550/arXiv.2303.09377
  • Buiten, M. C. (2019). Towards intelligent regulation of artificial intelligence. European Journal of Risk Regulation, 10(1), 41-59, https://doi.org/10.1017/err.2019.8 DOI: https://doi.org/10.1017/err.2019.8
  • Cantador, I., Viejo-Tardío, J., Cortés-Cediel, M. E., & Rodríguez Bolívar, M. P. (2021). A Chatbot for Searching and Exploring Open Data: Implementation and Evaluation in E-Government. In DG. O2021: The 22nd Annual International Conference on Digital Government Research, pp. 168-179, https://doi.org/10.1145/3463677.3463681 DOI: https://doi.org/10.1145/3463677.3463681
  • Chohan, S. R., & Akhter, Z. H. (2021). Electronic government services value creation from artificial intelligence: AI-based e-government services for Pakistan. Electronic Government, an International Journal, 17(3), 374-390, https://doi.org/10.1504/EG.2021.116003 DOI: https://doi.org/10.1504/EG.2021.116003
  • Chokki, A. P., Simonofski, A., Frénay, B., & Vanderose, B. (2022). Engaging Citizens with Open Government Data: The Value of Dashboards Compared to Individual Visualizations. Digital Government: Research and Practice, 3(3), 1-20, https://doi.org/10.1145/3558099 DOI: https://doi.org/10.1145/3558099
  • Etscheid, J. (2019). Artificial Intelligence in Public Administration: A Possible Framework for Partial and Full Automation. In Electronic Government: 18th IFIP WG 8.5 International Conference, EGOV 2019, San Benedetto Del Tronto, Italy, pp. 248-261, https://doi.org/10.1007/978-3-030-27325-5_19 DOI: https://doi.org/10.1007/978-3-030-27325-5_19
  • Fan, J., & Yang, W. (2015). Study on e-government services quality: The integration of online and offline services. Journal of Industrial Engineering and Management, 8(3), 693-718, https://doi.org/10.3926/jiem.1405 DOI: https://doi.org/10.3926/jiem.1405
  • Fong, M. W. L. (2009). Digital divide: The case of developing countries. Issues in Informing Science and Information Technology, 6(2), 471-478. Retrieved from https://vuir.vu.edu.au/4288/1/IISITv6p471-478Fong597.pdf DOI: https://doi.org/10.28945/1074
  • Huss, O., & Keudel, O. (2020). Open government in education: clarifying concepts and mapping initiatives. 1st edition. UNESCO IIEP. Retrieved from https://unesdoc.unesco.org/ark:/48223/pf0000373142
  • Huston, P., Edge, V. L., & Bernier, E. (2019). Benefits of Open Data in Public Health. Editorial Reaping the benefits of Open Data in public health. Open Science / Open Data, Volume 45–10, pp. 1 – 5, https://doi.org/10.14745/ccdr.v45i10a01 DOI: https://doi.org/10.14745/ccdr.v45i10a01
  • Kankanhalli, A., Charalabidis, Y., & Mellouli, S. (2019). IoT and AI for smart government: A research agenda. Government Information Quarterly, 36(2), 304–309, https://doi.org/10.1016/j.giq.2019.02.003 DOI: https://doi.org/10.1016/j.giq.2019.02.003
  • Kempeneer, S., & Wolswinkel, J. (2023). Rethinking Open Government Data for Citizen Participation. An Introduction to a Special Issue. Information Polity, (Preprint), 1-11, https://doi.org/10.3233/IP-239008 DOI: https://doi.org/10.3233/IP-239008
  • Kim, B., Park, J., & Suh, J. (2020). Transparency and accountability in AI decision support: Explaining and visualizing convolutional neural networks for text information. Decision Support Systems, 134, 113302, https://doi.org/10.1016/j.dss.2020.113302 DOI: https://doi.org/10.1016/j.dss.2020.113302
  • Kim, S., & Lee, J. (2012). E-participation, transparency, and trust in local government. Public administration review, 72(6), 819-828, https://doi.org/10.1111/j.1540-6210.2012.02593.x DOI: https://doi.org/10.1111/j.1540-6210.2012.02593.x
  • Krah, R. D. Y., & Mertens, G. (2020). Transparency in local governments: patterns and practices of twenty-first century. State and Local Government Review, 52(3), 200-213, https://doi.org/10.1177/0160323X20970245 DOI: https://doi.org/10.1177/0160323X20970245
  • Liu, H. W., Lin, C. F., & Chen, Y. J. (2019). Beyond State v Loomis: artificial intelligence, government algorithmization and accountability. International journal of law and information technology, 27(2), 122-141, https://doi.org/10.1093/ijlit/eaz001 DOI: https://doi.org/10.1093/ijlit/eaz001
  • Meijer, A. J., Curtin, D., & Hillebrandt, M. (2012). Open government: connecting vision and voice. International review of administrative sciences, 78(1), 10-29, https://doi.org/10.1177/0020852311429533 DOI: https://doi.org/10.1177/0020852311429533
  • Milić, P. (2019). Jedan pristup međusobnom povezivanju otvorenih podataka e-uprave [One approach to interconnecting open e-government data]. Doctoral dissertation, University of Niš.
  • Mukamurenzi, S., Grönlund, Å., & Islam, S. M. (2019). Improving qualities of e-government services in Rwanda: A service provider perspective. The Electronic Journal of Information Systems in Developing Countries, 85(5), e12089, https://doi.org/10.1002/isd2.12089 DOI: https://doi.org/10.1002/isd2.12089
  • Nguyen, V. T., Do, P., Vosin, A., & Iung, B. (2022). Artificial-intelligence-based maintenance decision-making and optimization for multi-state component systems. Reliability Engineering & System Safety, 228, 108757, https://doi.org/10.1016/j.ress.2022.108757 DOI: https://doi.org/10.1016/j.ress.2022.108757
  • Raaijmakers, S. (2019). Artificial intelligence for law enforcement: challenges and opportunities. IEEE security & privacy, 17(5), 74-77, https://doi.org/10.1109/MSEC.2019.2925649 DOI: https://doi.org/10.1109/MSEC.2019.2925649
  • Ruijer, E., Grimmelikhuijsen, S., Van Den Berg, J., & Meijer, A. (2020). Open data work: understanding open data usage from a practice lens. International Review of Administrative Sciences, 86(1), 3-19, https://doi.org/10.1177/0020852317753068 DOI: https://doi.org/10.1177/0020852317753068
  • Shah, I. A., Wassan, S., & Usmani, M. H. (2022). E-Government Security and Privacy Issues: Challenges and Preventive Approaches. In Cybersecurity Measures for E-Government Frameworks (pp. 61-76). IGI Global. DOI: https://doi.org/10.4018/978-1-7998-9624-1.ch004
  • Spalević, Ž., Veljković, N., & Milić, P. (2023). QODA – Methodology and Legislative Background for Assessment of Open Government Datasets Quality, Journal of Scientific & Industrial Research, 82(1), 38 – 49, https://doi.org/10.56042/jsir.v82i1.69940 DOI: https://doi.org/10.56042/jsir.v82i1.69940
  • Sträßer, J., & Stolicna, Z. (2023). Knowledge Management of Private Banks as an Asset Improved by Artificial Intelligence Discipline—Applied to Strategic McKinsey Portfolio Concept as Part of the Portfolio Management. In Developments in Information and Knowledge Management Systems for Business Applications: Volume 7 (pp. 375-399). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-25695-0_17 DOI: https://doi.org/10.1007/978-3-031-25695-0_17
  • Valle-Cruz, D., Gil-Garcia, J. R., & Fernandez-Cortez, V. (2020). Towards smarter public budgeting? Understanding the potential of artificial intelligence techniques to support decision making in government. In the 21st Annual International Conference on Digital Government Research, pp. 232-242, https://doi.org/10.1145/3396956.3396995 DOI: https://doi.org/10.1145/3396956.3396995
  • Veale, M., & Zuiderveen Borgesius, F. (2021). Demystifying the Draft EU Artificial Intelligence Act—Analysing the good, the bad, and the unclear elements of the proposed approach. Computer Law Review International, 22(4), 97-112, https://doi.org/10.9785/cri-2021-220402 DOI: https://doi.org/10.9785/cri-2021-220402
  • Vrabie, C. (2023). E-Government 3.0: An AI Model to Use for Enhanced Local Democracies. Sustainability, 15(12), 9572, https://doi.org/10.3390/su15129572 DOI: https://doi.org/10.3390/su15129572
  • Weerakkody, V., Irani, Z., Kapoor, K., Sivarajah, U., & Dwivedi, Y. K. (2017). Open data and its usability: an empirical view from the Citizen’s perspective. Information Systems Frontiers, 19, 285-300, https://doi.org/10.1007/s10796-016-9679-1 DOI: https://doi.org/10.1007/s10796-016-9679-1
  • Wirtz, B. W., Weyerer, J. C., & Rösch, M. (2019). Open government and citizen participation: an empirical analysis of citizen expectancy towards open government data. International Review of Administrative Sciences, 85(3), 566-586, https://doi.org/10.1177/0020852317719996 DOI: https://doi.org/10.1177/0020852317719996
  • Yates, A., Starkey, L., Egerton, B., & Flueggen, F. (2021). High school students’ experience of online learning during Covid-19: the influence of technology and pedagogy. Technology, Pedagogy and Education, 30(1), 59-73, https://doi.org/10.1080/1475939X.2020.1854337 DOI: https://doi.org/10.1080/1475939X.2020.1854337
  • Yeung, K. (2020). Recommendation of the council on artificial intelligence (OECD). International legal materials, 59(1), 27-34. DOI: https://doi.org/10.1017/ilm.2020.5
  • Zuiderwijk, A., Chen, Y.C., & Salem, F. (2021). Implications of the use of artificial intelligence in public governance: A systematic literature review and a research agenda. Government Information Quarterly, 38(3), 1 – 19, https://doi.org/10.1016/j.giq.2021.101577 DOI: https://doi.org/10.1016/j.giq.2021.101577
Еще
Статья научная