Искусственный интеллект в скрининге рака молочной железы (литературный обзор)
Автор: Солодкий В.А., Каприн А.Д., Нуднов Н.В., Харченко Н.В., Ходорович О.С., Запиров Г.М., Шерстнва Т.В., Дибирова Ш.М., Канахина Л.Б.
Журнал: Вестник Российского научного центра рентгенорадиологии Минздрава России @vestnik-rncrr
Рубрика: Обзоры, лекции
Статья в выпуске: 4 т.22, 2022 года.
Бесплатный доступ
Цель исследования: обобщить актуальные данные об использовании технологии искусственного интеллекта (ТИИ) в скрининге рака молочной железы (РМЖ). Материалы и методы. Проведен поиск релевантных статей по ключевым словам «рак молочной железы», «искусственный интеллект», «скрининг», «маммография» по открытымбазам данных PubMed, Google Scholar, Elibrary, ResearchGate, опубликованных с 2012 по 2022 гг. Среди них отобраны публикации с высокими индексами цитирования.Результаты. Изучение эффективности работы технологии компьютерного зрения позволяют рассматривать ее в качестве средства поддержки принятия медицинских решений при анализе скрининговых маммографических исследований для определения стратегии индивидуального скрининга и последующего наблюдения. Выводы. Методы, основанные на машинном обучении, не заменят гистологическую верификацию в ближайшем будущем. Внедрение этих методов в клиническую практику станет одной из важных и перспективных задач для достижения снижения смертности от рака молочной железы.
Рак молочной железы, скрининг, искусственный интеллект, машинное обучение, маммография, компьютерное зрение
Короткий адрес: https://sciup.org/149142259
IDR: 149142259
Список литературы Искусственный интеллект в скрининге рака молочной железы (литературный обзор)
- Под ред. А.Д. Каприна, В.В. Старинского, А.О. Шахзадовой. Состояние онкологической помощи населению России в 2021 году. М.: МНИОИ им. П.А. Герцена − филиал ФГБУ «НМИЦ радиологии» Минздрава России. 2022. 239 с.
- Tagliafico A.S., Piana M., Schenone D., et al. Overview of radiomics in breast cancer diagnosis and prognostication. Breast. 2019. V. 49. P. 74-80. DOI: 10.1016/j.breast.2019.10.018.
- Van den Ende C., Oordt-Speets A.M., Vroling H., et al. Benefits and harms of breast cancer screening with mammography in women aged 40-49 years: a systematic review. Int J Cancer. 2017. V. 141. No. 7. P. 1295–1306. DOI: 10.1002/ijc.30794.
- Fuchsjäger M. Is the future of breast imaging with AI? Eur Radiol. 2019. V. 29. No. 9. P. 4822-4824. DOI: 10.1007/s00330-019-06286-6.
- Théberge I., Chang S.L., Vandal N., et al. Radiologist interpretive volume and breast cancer screening accuracy in a Canadian organized screening program. JNCI J Nat Cancer Inst. 2014. V. 106. No. 3. P. 1-10. DOI: 10.1093/jnci/djt461.
- Phi X.-A., Tagliafico A., Houssami N., et al. Digital breast tomosynthesis for breast cancer screening and diagnosis in women with dense breasts - a systematic review and meta-analysis. BMC Canc. 2018. V. 18. No. 1. P. 1-9. DOI: 10.1186/s12885-018-4263-3.
- Sechopoulos I., Teuwen J., Mann R. Artificial intelligence for breast cancer detection in mammography and digital breast tomosynthesis: State of the art. Semin Cancer Biol. 2021. V. 72. No. 6. P.214-225. DOI: 10.1016/j.semcancer.2020.06.002.
- Mann R.M., Hooley R., Richard G.B., et al. Novel Approaches to Screening for Breast Cancer. Radiology. 2020. V. 297. No. 2. P. 266-285. DOI: 10.1148/radiol.2020200172.
- Tran W.T., Sadeghi-Naini A., Lu FI., et al. Computational Radiology in Breast Cancer Screening and Diagnosis Using Artificial Intelligence. Can Assoc Radiol J. 2021. V. 72. No. 1. P. 98-108. DOI: 10.1177/0846537120949974.
- Yassin N.I.R., Omran S., El E.M.F. Houby., Allam H. Machine learning techniques for breast cancer computer aided diagnosis using different image modalities: a systematic review. Comput Meth Progr Biomed. 2018. V. 156. P. 25-45. DOI: 10.1016/j.cmpb.2017.12.012.
- Ghoncheh M., Pournamdar Z., Salehiniya H. Incidence and mortality and epidemiology of breast cancer in the world. Asian Pac J Cancer Prev. 2016. V. 17. P. 43-46. DOI: 10.7314/apjcp.2016.17.s3.43.
- Hoff S.R., Abrahamsen A.L., Samset JH., et al. Breast cancer: missed interval and screening-detected cancer at full-field digital mammography and screen-film mammography - results from a retrospective review. Radiology. 2012. V. 264. No. 2. P. 378-386. DOI: 10.1148/radiol.12112074.
- Lamb L.R., Fonseca M.M., Verma R., Seely J.M. Missed Breast Cancer: Effects of Subconscious Bias and Lesion Characteristics. Radiographics. 2020. V. 40. No. 4. P. 941-960. DOI: 10.1148/rg.2020190090.
- Croskerry P. Achieving quality in clinical decision making: cognitive strategies and detection of bias. Acad Emerg Med. 2002. V. 9. No. 11. P. 1184-1204. DOI: 10.1111/j.1553-2712.2002.tb01574.x.
- Mumtaz H., Hall-Craggs M.A., Davidson T., et al. Staging of symptomatic primary breast cancer with MR imaging. AJR Am J Roentgenol. 1997. V. 169. No. 2. P. 417-424. DOI: 10.2214/ajr.169.2.9242745.
- Lehman C.D., Gatsonis C., Kuhl C.K., et al. MRI evaluation of the contralateral breast in women with recently diagnosed breast cancer. N Engl J Med. 2007. V. 356. No. 13. P. 1295-1303. DOI: 10.1056/NEJMoa065447.
- Healy N.A., O’Brien A., Knox M., et al. Consensus Review of Discordant Imaging Findings after the Introduction of Digital Screening Mammography: Irish National Breast Cancer Screening Program Experience. Radiology. 2020. V. 295. No. 1. P. 35-41. DOI: 10.1148/radiol.2020181454.
- Fracheboud J., van Luijt P.A., Sankatsing V.D.V., et al. National Evaluation Team for Breast Cancer Screening in the Netherlands (NETB). Nation-wide Breast Cancer Screening in the Netherlands, Results 1990 -2012. Erasmus MC and Radboudumc, Rotterdam. Int J Cancer. 2014. 102 p.
- Hendrick R.E., Helvie M.A. Mammography screening: a new estimate of number needed to screen to prevent one breast cancer death. AJR Am J Roentgenol. 2012. V. 198. No. 3. P. 723-728. DOI: 10.2214/AJR.11.7146.
- Ganesan K., Acharya U.R., Chua C.K., et al. Computer-aided breast cancer detection using mammograms: a review. IEEE Rev Biomed Eng. 2013. V. 6. P. 77-98. DOI: 10.1109/RBME.2012.2232289.
- van Engeland S., Karssemeijer N. Combining two mammographic projections in a computer aided mass detection method. Med Phys. 2007. V. 34. No. 3. P. 898-905. DOI: 10.1118/1.2436974.
- Tahmoush D., Samet H. An improved asymmetry measure to detect breast cancer. Proc. SPIE. 2007, V. 6514. 65141Q. DOI:10.1117/12.708327.
- Wang X., Li L., Xu W., et al. Improving performance of computer-aided detection of masses by incorporating bilateral mammographic density asymmetry: an assessment Acad. Radiol. 2012. V. 19. No. 3. P. 303-310. DOI: 10.1016/j.acra.2011.10.026.
- Castellino R.A. Computer aided detection (CAD): an overview. Cancer Imaging. 2005. V. 5. No. 1. P. 17-19. DOI: 10.1102/1470-7330.2005.0018.
- Bernardi D., Macaskill P., Pellegrini M., et al. Breast cancer screening with tomosynthesis (3D mammography) with acquired or synthetic 2D mammography compared with 2D mammography alone (STORM-2): a population-based prospective study. Lancet Oncol. 2016. V. 17. No. 8. P. 1105-1113. DOI: 10.1016/S1470-2045(16)30101-2.
- Destounis S.V., DiNitto P., Logan-Young W., et al. Can computer-aided detection with double reading of screening mammograms help decrease the false-negative rate. Initial experience. Radiology. 2004. V. 232. No. 2. P. 578-584. DOI: 10.1148/radiol.2322030034.
- Lehman C.D., Wellman R.D., Buist D.S.M., et al. Diagnostic accuracy of digital screening mammography with and without computer-aided detection. JAMA Intern Med. 2015. V. 175. No. 11. P. 1828-1837. DOI: 10.1001/jamainternmed.2015.5231.
- Fracheboud J., de Gelder R., Otto S.J., et al. National Evaluation Team for Breast Cancer Screening in the Netherlands (NETB). Nation-wide Breast Cancer Screening in the Netherlands, Results 1990-2007. Erasmus MC and Radboudumc, Rotterdam. Int J Cancer. 2009. 112 p.
- Ikeda D.M., Birdwell R.L., O’Shaughnessy K.F., et al. Computer-aided detection output on 172 subtle findings on normal mammograms previously obtained in women with breast cancer detected at follow-up screening mammography. Radiology. 2004. V. 230. No. 3. P. 811-819. DOI: 10.1148/radiol.2303030254.
- Bernardi D., Macaskill P., Pellegrini M., et al. Breast cancer screening with tomosynthesis (3D mammography) with acquired or synthetic 2D mammography compared with 2D mammography alone (STORM-2): a population-based prospective study. Lancet Oncol. 2016. V. 17. No. 8. P. 1105-1113. DOI: 10.1016/S1470-2045(16)30101-2.
- Samala R.K., Chan H.-P., Hadjiiski L.M., et al. Analysis of computer-aided detection techniques and signal characteristics for clustered microcalcifications on digital mammography and digital breast tomosynthesis. Phys Med Biol. 2016. V. 61. No. 19. P. 7092-7112. DOI: 10.1088/0031-9155/61/19/7092.
- Katzen J., Dodelzon K. A review of computer aided detection in mammography. Clin Imaging. 2018. V. 52. P. 305-309. DOI: 10.1016/j.clinimag.2018.08.014.
- Crivelli P., Ledda R.E., Parascandolo N., et. al. A new challenge for radiologists: radiomics in breast cancer. BioMed Res Int. 2018. V. 2018. Article ID 6120703. DOI: 10.1155/2018/6120703.
- Valdora F., Houssami N., Rossi F., et. al. Rapid review: radiomics and breast cancer. Breast Canc Res Treat. 2018. V. 169. No. 2. P. 217-229. DOI: 10.1007/s10549-018-4675-4.
- Fedorov A., Beichel R., Kalpathy-Cramer J., et. al. 3D slicer as an image computing platform for the quantitative imaging network. Magn Reson Imag. 2012. V. 30. No. 9. P. 1323-1341. DOI: 10.1016/j.mri.2012.05.001.
- Le EPV., Wang Y., Huang Y., et. al. Artificial intelligence in breast imaging. Clin Radiol. 2019. V. 74. No. 5. P. 357-366. DOI: 10.1016/j.crad.2019.02.006.
- Глубокое обучение (Deep Learning). 2018. Адрес доступа https://neurohive.io/ru/osnovy-data-science/glubokoe-obuchenie-deep-learning-kratkij-tutorial/ (дата доступа 03. 12. 22).
- Rodriguez-Ruiz A., Lång K., Gubern-Merida A., et al. Stand-alone artificial intelligence for breast Cancer detection in mammography: comparison with 101 radiologists. J Natl Cancer Inst. 2019. V. 111. No. 9. P. 916-922. DOI: 10.1093/jnci/djy222.
- Kim E.-K., Kim H.-E., Han K., et al. Applying data-driven imaging biomarker in mammography for breast cancer screening: preliminary study. Sci Rep. 2018. V. 8. No. 1. Article ID 2762. DOI: 10.1038/s41598-018-21215-1.
- Cameron A.J., Cameron A.M. Current Surgical Therapy. 2020. V. 13.
- Elmore J.G., Armstrong K., Lehman C.D., et al. Screening for breast cancer. JAMA. 2005. V. 293. No. 10. P. 1245-1256. DOI: 10.1001/jama.293.10.1245.
- Qu J., Zhao X., Chen P., et al. Deep learning on digital mammography for expert-level diagnosis accuracy in breast cancer detection. Multimedia Systems. 2022. V. 28. No. 2. P. 1-2. DOI:10.1007/s00530-021-00823-4.
- Schaffter T., Buist D.S.M., Lee C.I., et al. Evaluation of Combined Artificial Intelligence and Radiologist Assessment to Interpret Screening Mammograms. JAMA Netw Open. 2020. V. 3. No. 3. P. 1-15. DOI: 10.1001/jamanetworkopen.2020.0265.
- McKinney S.M., Sieniek M., Godbole V., et al. International evaluation of an AI system for breast cancer screening. Nature. 2020. V. 577. No. 7788. P. 89–94. DOI: 10.1038/s41586-019-1799-6.
- Kizildag Y.I., Koyluoglu Y.O., Seker M.E., et al. Diagnostic Performance of AI for Cancers Registered in A Mammography Screening Program: A Retrospective Analysis. Technol Cancer Res Treat. 2022. V. 21. Article ID 15330338221075172. DOI: 10.1177/15330338221075172.
- Ribli D., Horváth A., Unger Z. et al. Detecting and classifying lesions in mammograms with Deep Learning. Sci Rep. 2018. V. 8. No. 1. Article ID 4165. DOI: 10.1038/s41598-018-22437-z.